Exercice n°1:

On donne la fonction f définie sur \mathbb{R} par : $f(x) = -x^4 + 2x^2 + 1$. On appelle Γ la courbe représentative de f dans un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.

- 1. Étudier la parité de f.
- 2. Déterminer les limites de f aux bornes de son domaine de définition.

PROF: ATMANI NAJIB

- 3. Calculer la fonction dérivée de f et étudier son signe.
- 4. Dresser le tableau de variations de f.
- 5. Tracer la courbe représentative de f.

Corrigé

Exercice n°2:

Soit la fonction définie sur $\mathbb{R} - \{1\}$, par $f(x) = \frac{x^2 + x + 1}{x - 1}$.

On note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. Montrer que (C_f) admet un centre de symétrie en un point d'abscisse 1.
- 2. Déterminer les limites de f aux bornes de son domaine de définition. Que peut-on en déduire pour (C_f) ?
- 3. Déterminer trois réels a, b et c tels que : $f(x) = ax + b + \frac{x}{x-1}$.
- 4. En déduire l'existence d'une asymptote oblique pour (\mathcal{C}_f) en $+\infty$.
- 5. Calculer la fonction dérivée de f et étudier son signe.
- 6. Dresser le tableau de variation de f.
- 7. Tracer (\mathcal{C}_f) .

Corrigé

Exercice n°3:

On donne la fonction f définie par $f(x) = \frac{3}{x^2 + 2x - 3}$, et on note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. Déterminer le domaine de définition \mathcal{D}_f de la fonction f.
- 2. Montrer que la droite d'équation x = -1 est axe de symétrie de (C_f) . Dans la suite de l'exercice, la fonction f sera étudiée sur $[-1; 1[\cup]1; +\infty[$.
- 3. Déterminer les limites en 1 et la limite en $+\infty$. Que peut-on en déduire pour (\mathcal{C}_f) ?
- 4. Calculer la fonction dérivée de f et étudier son signe.
- 5. Dresser le tableau de variations de f.
- 6. Tracer (\mathcal{C}_f) .

Corrigé

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB

Exercice n°4:

On donne la fonction f définie par $f(x) = \frac{x^2}{x^2 - 2x + 2}$, et on note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. Déterminer le domaine de définition de f.
- 2. Déterminer les limites de f aux bornes du domaine, en déduire l'existence d'une asymptote horizontale (Δ) pour (\mathcal{C}_f) .
- 3. Étudier les positions relatives de (C_f) et de (Δ) .
- 4. Calculer la fonction dérivée de f et étudier son signe.
- 5. Dresser le tableau de variations de f.
- 6. Tracer (C_f) .

Corrigé

Exercice n°5:

On donne la fonction f définie par $f(x) = \frac{2x^3 + 27}{2x^2}$ et on note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. Déterminer l'ensemble de définition \mathcal{D}_f de f.
- 2. Déterminer les limites de f aux bornes de son ensemble de définition.
- 3. Montrer que la droite d'équation y = x est asymptote oblique à la courbe en $+\infty$ et en $-\infty$.
- 4. (a) Justifier l'équivalence : $x \ge 3 \Leftrightarrow x^3 \ge 27$.
 - (b) Calculer la fonction dérivée de f.
 - (c) Étudier le signe de f'.
- 5. Dresser le tableau de variations de f.
- 6. Tracer la courbe représentative de f.

Corrigé

Exercice n°6:

On donne la fonction f définie sur \mathbb{R} par $f(x) = \cos 2x - 2\cos x$ et on note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. (a) Montrer que f est 2π -périodique.
 - (b) Montrer que f est paire.
- 2. (a) Montrer que la fonction dérivée de f s'écrit : $f'(x) = 2\sin x(1-2\cos x)$.
 - (b) Étudier le signe de f' sur $[0; \pi]$.
- 3. Dresser le tableau de variations de f sur $[0; \pi]$.
- 4. Tracer (\mathcal{C}_f) sur un intervalle de longueur 4π .

Corrigé

Exercice n°7:

On donne la fonction f définie sur \mathbb{R} par $f(x) = \frac{\sin x}{1 - \sin x}$ et on note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. Montrer que f est définie ssi $x \neq \frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$.
- 2. Montrer que f est 2π -périodique.

Pour la suite de l'exercice, on étudiera la fonction sur l'intervalle $\left] -\frac{3\pi}{2}; \frac{\pi}{2} \right[$.

- 3. Déterminer les limites de f en :
 - (a) $-\frac{3\pi}{2}$ par valeurs supérieures,
 - (b) $\frac{\pi}{2}$ par valeurs inférieures,
- 4. Calculer la fonction dérivée de f et étudier son signe.
- 5. Dresser le tableau de variations de f
- 6. Tracer (\mathcal{C}_f) sur $\left] -\frac{3\pi}{2}; \frac{5\pi}{2} \right[$.

Corrigé

Exercice n°8:

On donne la fonction f définie sur \mathbb{R} par $x^2 - |x|$ et on note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. Montrer que f est paire.
- 2. Donner l'expression de f sans valeur absolue sur \mathbb{R}^+ puis sur \mathbb{R}^- .
- 3. Étudier la dérivabilité de f en 0.
- 4. Étudier la fonction f sur \mathbb{R}^+ .
- 5. Tracer (\mathcal{C}_f) sur \mathbb{R} .

Corrigé

Exercice n°9:

On donne la fonction f définie sur \mathbb{R} par $x-\sqrt{|x-1|}$ et on note (\mathcal{C}_f) sa courbe représentative dans un repère orthonormé.

- 1. Donner l'expression de f sans valeur absolue sur $[1; \infty[$ et sur $] \infty; 1]$.
- 2. Étudier la dérivabilité de f en 1.
- 3. Étudier la fonction sur $]-\infty;1]$.
- 4. Étudier la fonction sur $[1; +\infty[$.
- 5. Dresser le tableau de variations de f sur \mathbb{R} .
- 6. Tracer la courbe (C_f) .

Corrigé

http://www.xriadiat.com PROF: ATMANI NAJIB 1 bac Sciences Expérimentales et math

Etudes de fonctions

Définition : soit x un nombre réel, on appelle partie entière de x et on note E(x), le plus grand entier inférieur ou égal à x.

Exemples:

$$E(5,4) = 5$$
 $E(\sqrt{2}) = 1$ $E(4) = 4$ $E(-2,5) = -3$.

Exercice n°10:

Tracer la courbe représentative de la fonction partie entière : $x \mapsto E(x)$ sur l'intervalle [-3,3[.

Corrigé

Exercice n°11:

On définit sur \mathbb{R} la fonction f par : f(x) = x - E(x).

- 1. Montrer que E est périodique de période 1.
- 2. Donner l'expression de f sur [0,1] puis sur [1,2].
- 3. Tracer la courbe représentative de f sur [-3, 3].

Corrigé

http://www.xriadiat.com

Exercice n°1:

1. Pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$. (On peut aussi dire que le domaine de définition est centré en 0.)

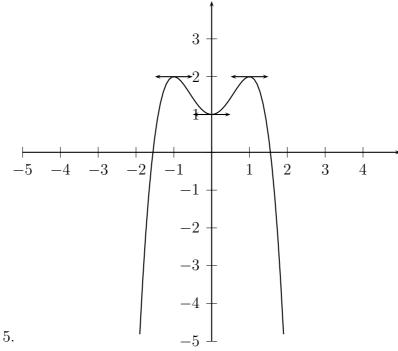
soit $x \in \mathbb{R}$, $f(-x) = -(-x)^4 + 2(-x)^2 + 1 = -x^4 + 2x^2 + 1 = f(x)$, donc f est paire

- 2. $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x^4 = -\infty$ et par symétrie : $\lim_{x \to -\infty} f(x) = -\infty$.
- 3. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, on a : $f'(x) = -4x^3 + 4x = 4x(1 x^2)$. D'une part $4x \ge 0 \Leftrightarrow x \ge 0$, d'autre part $1 - x^2 \ge 0 \Leftrightarrow x \in [-1; 1]$ (règle du signe du trinôme), ce qui donne :

x	0		1		$+\infty$
4x	Ò	+		+	
$1 - x^2$		+	0	_	
f'(x)	Ò	+	0	_	

4.

x	0	1	$+\infty$
f'(x)	0 +	. 0	_
f(x)	1	· 2 \	$-\infty$



Dans un graphique doivent apparaître toutes les droites dont il a été question dans le sujet, auquel s'ajoutent les tangentes horizontales.

Retour

PROF: ATMANI NAJIB

Exercice n°2:

1. Le domaine de définition est centré en 1, de plus pour tout $h \neq 0$, on a :

$$\frac{1}{2}[f(1+h)+f(1-h)] = \frac{1}{2}\left[\frac{(1+h)^2+(1+h)+1}{1+h-1} + \frac{(1-h)^2+(1-h)+1}{1-h-1}\right]
= \frac{1}{2}\left[\frac{3+3h+h^2}{h} + \frac{3-3h+h^2}{-h}\right]
= \frac{1}{2}\left[\frac{3+3h+h^2-3+2h-h^2}{h}\right] = \frac{1}{2} \times \frac{6h}{h} = 3$$

Donc le point Ω de coordonnées (1; 3) est centre de symétrie de (\mathcal{C}_f) .

2. • $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$ et par symétrie, $\lim_{x \to -\infty} f(x) = -\infty$. • $\lim_{x \to 1} (x^2 + x + 1) = 3$ et $\lim_{x \to 1} x - 1 = 0^+$, donc $\lim_{x \to 1} f(x) = +\infty$, et par symétrie : $\lim f(x) = -\infty.$

3. Pour tout $x \neq 1$, $ax + b + \frac{c}{x-1} = \frac{(ax+b)(x-1)+c}{x-1} = \frac{ax^2 + (b-a)x + c - b}{x-1}$, en identifiant le numérateur de cette fraction avec celui de f(x), on obt

$$\begin{cases} a=1 \\ b-a=1 \\ c-b=1 \end{cases} \Leftrightarrow \begin{cases} a=1 \\ b=2 \\ c=3 \end{cases}, \text{ donc } f(x)=x+2+\frac{3}{x-1}.$$

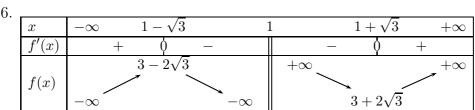
4. $\lim_{x \to +\infty} \frac{3}{x-1} = 0$, donc $\lim_{x \to +\infty} (f(x) - (x+2)) = 0$ et la droite (d) d'équation y = x+2 est asymptote à la courbe en $+\infty$.

Puisque $\Omega \in (d)$, nous pouvons déduire que (d) est aussi asymptote à (\mathcal{C}_f) en $-\infty$.

5. Pour $x \neq 1$, f est dérivable comme quotient de deux polynômes, et :

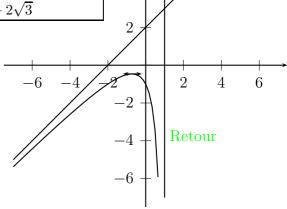
$$f'(x) = \frac{(2x+1)(x-1) - (x^2 + x + 1)}{(x-1)^2} = \frac{x^2 - 2x - 2}{(x-1)^2}.$$

Pour tout $x \neq 1, (x-1)^2 > 0$, donc f'(x) est du signe de $x^2 - 2x - 2$, polynôme ayant pour racines $1-\sqrt{3}$ et $1+\sqrt{3}$ qui, d'après la règle du signe du trinôme est positif ssi $x \in]-\infty; 1-\sqrt{3}[\cup]1+\sqrt{3}; +\infty[$.



Remarque : il était possible de ne faire que

la moitié du tableau de variations.



8

6

4

Exercice n°3:

1. f est définie ssi $x^2 + 2x - 3 \neq 0$ ssi $x \neq 1$ et $x \neq -3$, donc $\mathcal{D}_f = \mathbb{R} - \{-3, 1\}$.

2. \mathcal{D}_f est symétrique par rapport à 1, et pour tout $h \neq \pm 2$, on a :

$$f(-1+h) = \frac{3}{(-1+h)^2 + 2(-1+h) - 3} = \frac{3}{h^2 - 4},$$

et $f(1+h) = \frac{3}{(1+h)^2 + 2(1+h) - 3} = \frac{3}{h^2 - 4}.$

Donc f(-1+h) = f(-1-h) et la droite d'équation x = -1 est axe de symétrie de (\mathcal{C}_f) .

3. • $\lim_{x \to 1} x^2 + 2x - 3 = 0^-$, donc $\lim_{x \to 1} f(x) = -\infty$, d'autre part : $\lim_{x \to 1} x^2 + 2x - 3 = 0^+$, donc $\lim_{x \to 1} f(x) = +\infty$.

 (\mathcal{C}_f) admet une asymptote verticale d'équation x=1.

Remarque : Le signe $(0^+$ ou $0^-)$ est facile à déterminer ici, cela serait plus compliqué avec par exemple : $x^2 - 2x$.

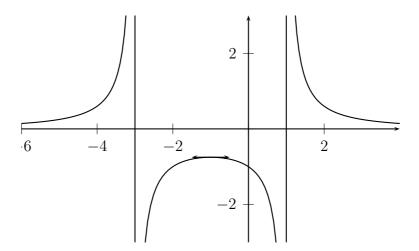
• $\lim_{x \to +\infty} x^2 + 2x - 3 = +\infty$, donc $\lim_{x \to +\infty} f(x) = 0$, (\mathcal{C}_f) admet une asymptote horizontale d'équation y = 0 en $+\infty$.

4. f est dérivable sur \mathcal{D}_f , et pour tout $x \in \mathcal{D}_f$: $f'(x) = \frac{-3(2x+2)}{(x^2+2x-3)^2}$.

Le dénominateur étant strictement positif, $f'(x) \ge 0 \Leftrightarrow -3(2x+2) \ge 0 \Leftrightarrow x \le -1$.

5.

x	-1	$1 + \infty$
f'(x)	0 -	_
f(x)	$-\frac{3}{4}$ $-\infty$	$+\infty$ 0



Exercice n°4:

- 1. Le polynôme $x^2 2x + 2$ a pour discriminant $\Delta = -4 < 0$, donc ce polynôme ne s'annule pas sur \mathbb{R} et le domaine de définition de f est \mathbb{R} .
- 2. $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2}{x^2} = 1$, de même $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2}{x^2} = 1$, donc (C_f) admet une asymptote horizontale d'équation y = 1 en $+\infty$ et en $-\infty$.
- 3. Pour étudier les positions relatives de (C_f) et de (Δ) , j'étudie le signe de f(x) 1.

$$f(x) - 1 = \frac{x^2}{x^2 - 2x + 2} - 1 = \frac{2x - 2}{x^2 - 2x + 2}.$$

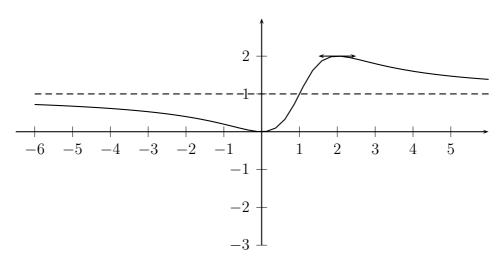
Pour tout $x \in \mathbb{R}$, $x^2 - 2x + 2 > 0$, donc $f(x) - 1 \ge 0 \Leftrightarrow 2x - 2 \ge 0 \Leftrightarrow x \ge 1$. Donc (\mathcal{C}_f) est au dessus de son asymptote sur $[1, +\infty[$ et elle est en dessous sur $] - \infty; 1]$.

4. f est dérivable sur \mathbb{R} et $f'(x) = \frac{2x(x^2 - 2x + 2) - x^2(2x - 2)}{(x^2 - 2x + 2)^2} = \frac{2x(2 - x)}{(x^2 - 2x + 2)^2}$.

 $(x^2-2x+2)^2$ étant strictement positif sur \mathbb{R} , $f'(x)\geqslant 0 \Leftrightarrow 2x(2-x)\geqslant 0 \Leftrightarrow x\in [0;2]$.

5.

x	$-\infty$ 0 2 $+\infty$
f'(x)	$- \phi + \phi -$
f(x)	



Exercice n°5:

1. f est définie ssi $2x^2 \neq 0$ ssi $x \neq 0$, donc $\mathcal{D}_f = \mathbb{R}^*$.

2.
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{2x^3}{2x^2} = \lim_{x \to -\infty} x = -\infty$$
, de même $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x = +\infty$. $\lim_{x \to 0} (2x^3 + 27) = 27$ $\lim_{x \to 0} 2x^2 = 0^+$ $\lim_{x \to 0} 2x^2 = 0^+$ donc $\lim_{x \to 0} f(x) = +\infty$. (à gauche et à droite)

3. Pour tout $x \neq 0$, $f(x) - x = \frac{2x^3 + 27}{2x^2} - x = \frac{27}{2x^2}$, or $\lim_{x \to +\infty} \frac{27}{2x^2} = \lim_{x \to -\infty} \frac{27}{2x^2} = 0$, donc la droite d'équation y = x est asymptote oblique à la courbe en $+\infty$ et en $-\infty$

4. (a) La fonction $x \mapsto x^3$ étant croissante sur \mathbb{R} , on a : $x \geqslant 3 \Leftrightarrow x^3 \geqslant 3^3 \Leftrightarrow x^3 \geqslant 27$.

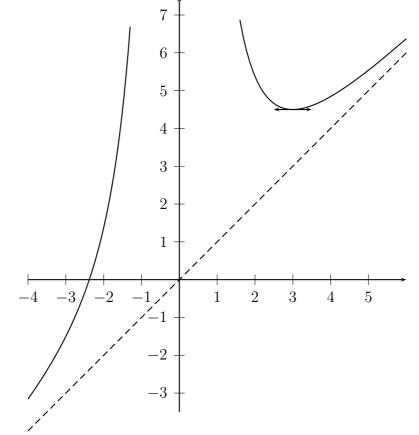
(b) f est dérivable sur \mathbb{R}^* et pour tout $x \neq 0$,

$$f'(x) = \frac{6x^2 \times 2x^2 - (2x^3 + 27) \times 4x}{4x^4} = \frac{x(x^3 - 27) \times 4x}{x^4}$$

(c)

x	$-\infty$		0		3		$+\infty$
x		_	Ó	+		+	
$x^3 - 27$		_		_	Ó	+	
x^4		+	Ó	+		+	
f'(x)		+		_	Q	+	

x	$-\infty$ ($3 + \infty$
f'(x)	+	- 0 +
f(x)	0 $+\infty$	$+\infty$ 0



Retour

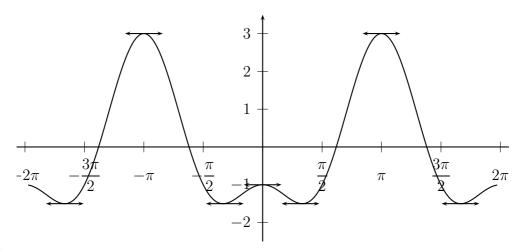
PROF: ATMANI NAJIB

Exercice n°6:

- 1. Le domaine de définition est \mathbb{R} , donc pour tout $x \in \mathbb{R}$, $x + 2\pi \in \mathbb{R}$ et $-x \in \mathbb{R}$.
 - (a) Pour tout $x \in \mathbb{R}$, $f(x+2\pi) = \cos(2x+4\pi) 2\cos(x+2\pi) = \cos 2x 2\cos x = f(x)$, donc f est périodique, de période 2π .
 - (b) Pour tout $x \in \mathbb{R}$, $f(-x) = \cos(-2x) 2\cos(-x) = \cos(2x) 2\cos x = f(x)$, donc f est paire.
- 2. (a) f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$: $f'(x) = -2\sin 2x + 2\sin x = -4\sin x\cos x + 2\sin x = 2\sin x(-2\cos x + 1).$
 - (b) Pour tout $x \in]0; \pi[, \sin x > 0, \text{ donc } f'(x) \text{ est du signe de } 1 2\cos x.$ Remarque : on a $f'(0) = f'(\pi) = 0.$

Or, pour $x \in [0, \pi], 1 - 2\cos x \ge 0 \Leftrightarrow \cos x \le \frac{1}{2} \Leftrightarrow x \in \left[\frac{\pi}{3}; \pi\right].$

x	0		$\frac{\pi}{3}$		π
f'(x)	Ò	_	Ó	+	Ó
f(x)	-1	\	$-\frac{3}{2}$,



3.

Exercice n°7:

1.
$$f$$
 est définie ssi $1 - \sin x \neq 0$ ssi $\sin x \neq 1$ ssi $x \neq \frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$.

2. pour tout
$$x \neq \frac{\pi}{2} + 2k\pi$$
, $f(x + 2\pi) = \frac{\sin(x + 2\pi)}{1 - \sin(x + 2\pi)} = \frac{\sin x}{1 - \sin x} = f(x)$, donc f est 2π -périodique.

3. (a)
$$\lim_{x \to -\frac{3\pi}{2}} \sin x = 1$$
 et $\lim_{x \to -\frac{3\pi}{2}} 1 - \sin x = 0^+$ donc $\lim_{x \to -\frac{3\pi}{2}} f(x) = +\infty$

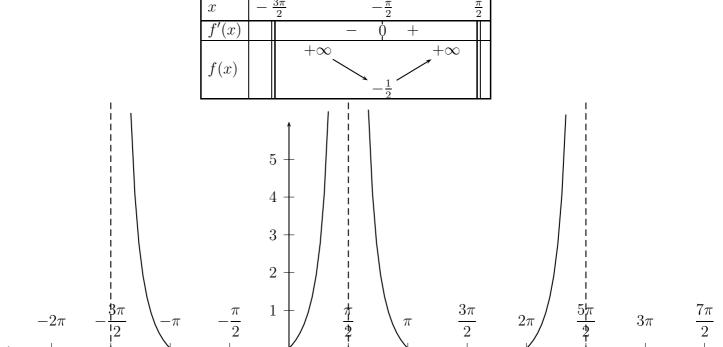
(b)
$$\lim_{x \le \frac{\pi}{2}} \sin x = 1$$
 et $\lim_{x \le \frac{\pi}{2}} 1 - \sin x = 0^+$ donc $\lim_{x \le \frac{\pi}{2}} f(x) = +\infty$

4. Pour tout
$$x \in \left[-\frac{3\pi}{2}; \frac{\pi}{2} \right]$$
, f est dérivable et

$$f'(x) = \frac{\cos x(1 - \sin x) - \sin x(-\cos x)}{(1 - \sin x)^2} = \frac{\cos x}{(1 - \sin x)^2}.$$

$$(1-\sin x)^2 > 0$$
, donc $f'(x) \ge 0 \Leftrightarrow \cos x \ge 0 \Leftrightarrow x \in \left[-\frac{3\pi}{2}; -\frac{\pi}{2}\right]$.

5.



Exercice n°8:

1. Le domaine de définition est \mathbb{R} .

Pour tout
$$x \in \mathbb{R}$$
, $f(-x) = (-x)^2 - |-x| = x^2 - |x| = f(x)$.

2. Si
$$x \ge 0$$
: $f(x) = x^2 - x$ et si $x \le 0$: $f(x) = x^2 - (-x) = x^2 + x$

3.
$$\lim_{x \ge 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \ge 0} \frac{x^2 - x}{x} = \lim_{x \ge 0} x - 1 = -1.$$

$$\lim_{x \le 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \le 0} \frac{x^2 + x}{x} = \lim_{x \le 0} x + 1 = 1.$$

La limite à gauche et la limite à droite étant différente, la limite du taux d'accroissement n'existe pas et f n'est pas dérivable en 0. (On parle ici de demi-tangentes à droite et à gauche de cœfficients directeurs -1 et 1).

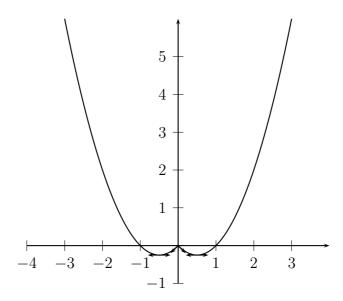
4. Sur \mathbb{R}^+ , $f(x) = x^2 - x$, de dérivée f'(x) = 2x - 1, négative sur $\left[0; \frac{1}{2}\right]$ et positive sur

$$\left[\frac{1}{2};+\infty\right[.$$

Ce qui donne sur $[0; +\infty[$:

x	$0 \qquad \frac{1}{2} \qquad +\infty$
f'(x)	- O +
f(x)	$0 + \infty$ $-\frac{1}{2}$

5.



Remarque : La fonction valeur absolue existe sur vos calculatrice sous le nom de Abs. (Menu math sur TI, Optn puis Num sur Casio)

Exercice n°9:

1. Sur
$$[1; \infty[, f(x) = x - \sqrt{x-1} \text{ et sur }] - \infty; 1], f(x) = x - \sqrt{1-x}.$$

$$2. \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x - \sqrt{x - 1} - 1}{x - 1} = \lim_{x \to 1} 1 - \frac{1}{\sqrt{x - 1}} = -\infty.$$

$$\text{et } \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x - \sqrt{1 - x} - 1}{x - 1} = \lim_{x \to 1} 1 - \frac{\sqrt{1 - x}}{x - 1} = \lim_{x \to 1} 1 + \frac{1}{\sqrt{1 - x}} = +\infty.$$

Donc f n'est pas dérivable en 1.

En fait, une seule de ces limites était suffisante, mais j'ai mis les deux pour que vous puissiez apprécier le changement de signe à la dernière étape de la deuxième limite.

3. Sur
$$]-\infty;1], f(x)=x-\sqrt{1-x}.$$

On a:
$$\lim_{x \to -\infty} \sqrt{1-x} = +\infty$$
, donc $\lim_{x \to -\infty} f(x) = -\infty$.

On a:
$$\lim_{x \to -\infty} \sqrt{1-x} = +\infty$$
, donc $\lim_{x \to -\infty} f(x) = -\infty$.
Et $f'(x) = 1 - \frac{-1}{2\sqrt{1-x}} = 1 + \frac{1}{\sqrt{1-x}}$ qui est positif sur $]-\infty;1[$, donc f est croissante sur cet intervalle.

4. Sur
$$[1; +\infty[$$
, $f(x) = x - \sqrt{x-1}]$.

On a:
$$f(x) = x - \sqrt{x^2 \left(\frac{1}{x} - \frac{1}{x^2}\right)} = x \left(1 - \sqrt{\frac{1}{x} - \frac{1}{x^2}}\right)$$
. $(\sqrt{x^2} = x \text{ car } x > 0)$

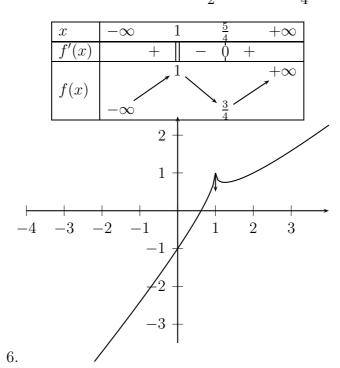
Or
$$\lim_{x \to +\infty} \sqrt{\frac{1}{x} - \frac{1}{x^2}} = 0$$
, donc $\lim_{x \to +\infty} f(x) = +\infty$.

Et
$$f'(x) = 1 - \frac{1}{2\sqrt{x-1}} = \frac{2\sqrt{x-1}-1}{\sqrt{1-x}}$$
.

Pout tout $x \in]1; +\infty[$

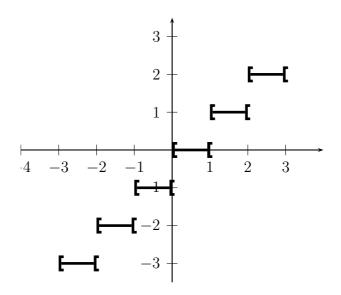
$$\sqrt{x-1} > 0 \text{ et } 2\sqrt{x-1} - 1 \geqslant 0 \Leftrightarrow \sqrt{x-1} \geqslant \frac{1}{2} \Leftrightarrow x-1 \geqslant \frac{1}{4} \Leftrightarrow x \geqslant \frac{5}{4}.$$

5.



PROF: ATMANI NAJIB

Exercice n°10:

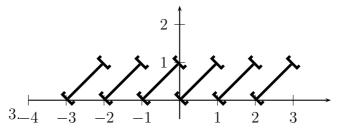


Ce type de fonction porte le nom de fonction en escalier.

Retour

Exercice n°11:

- 1. Pour tout $x \in \mathbb{R}$, E(x+1) = E(x) + 1. (Attention E(x+y) n'est pas forcément égal à E(x) + E(y)). Ce qui donne f(x+1) = (x+1) - E(x+1) = x + 1 - E(x) - 1 = x - E(x) = f(x). Donc f est 1-périodique.
- 2. Pour $x \in [0, 1[, E(x) = 0, \text{ donc } f(x) = x E(x) = x.$ Pour $x \in [1, 2[, E(x) = 1, \text{ donc } f(x) = x - E(x) = x - 1.$



f(x) = x - E(x) est la partie fraction naire (ou décimale) de \boldsymbol{x}