http://www.xriadiat.com

DS1: R

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Correction: Devoir surveillé n°1 sur les leçons suivantes:

LA LOGIQUE ET ENSEMBLES ET APPLICATIONS

Durée: 2 heures

Exercice1: (9pts): $(1,5pts \times 6)$

Déterminer la valeur de vérité et la négation de chacune des propositions suivantes et (justifier vos réponses avec un raisonnement bien précis) :

- 1) P_1 : « $(\forall n \in \mathbb{N})$; 6n+5 est un nombre premier »
- 2) P_2 : « $\forall n \in \mathbb{N}$: $\frac{2n+1}{4} \notin \mathbb{N}$ »
- 3) P_3 : $(x, y) \in \mathbb{R}^2$ et $y \neq 2x$; $y \neq \frac{1}{8}x \Rightarrow \frac{x+2y}{2x-y} \neq \frac{2}{3}$
- 4) P_4 : « $\forall x \in \mathbb{R}_+^*$; $\frac{2x+1}{2\sqrt{x(x+1)}} > 1$ »
- 5) P_5 : « $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}); 0 \prec y^2 x 1$
- 6) P_6 : « $\forall n \in \mathbb{N}$; $n^3 n$ est divisible par 3»

Solution: 1) On utilise un raisonnement par contre-exemple:

 $\overline{P_1}$: « $(\exists n \in \mathbb{N})/6n+5$ n'est pas un nombre premier » est vraie

En effet : pour $(\exists n = 12 \in \mathbb{N})$ et $6 \times 12 + 5 = 72 + 5 = 77 = 7 \times 11$

77 n'est pas un nombre premier (n = 12 est le contre-exemple)

La proposition $\overline{P_1}$: est vraie par suite P_1 : est <u>fausse</u>

2) Montrons que : P_2 : $\forall n \in \mathbb{N}$: $\frac{2n+1}{4} \notin \mathbb{N}$ est vraie

Soit $n \in \mathbb{N}$: Par l'absurde, supposons que : $\exists n \in \mathbb{N}$ tel que : $\frac{2n+1}{4} \in \mathbb{N}$

C'est-à-dire : $\exists n \in \mathbb{N} \text{ et } \exists m \in \mathbb{N} \text{ tel que : } \frac{2n+1}{4} = m$

$$\frac{2n+1}{4} = m \Leftrightarrow 2n+1 = 4m \Rightarrow 1 = 4m-2n \Rightarrow 1 = 2(2m-n) \Rightarrow 1 = 2k \text{ avec } k = 2m-n \in \mathbb{N}$$

⇒1est pair !. C'est une contradiction car on sait que : 1 est impair

Ceci signifie: $\forall n \in \mathbb{N} : \frac{2n+1}{4} \notin \mathbb{N}$

Soit $x \in \mathbb{R} - \{-1\}$

3) Montrons que :
$$P_3$$
: « $\forall (x; y) \in \mathbb{R}^2$ et $y \neq 2x$; $\left(y \neq \frac{1}{8}x \Rightarrow \frac{x+2y}{2x-y} \neq \frac{2}{3} \right)$ est vraie

Démontrons en utilisant la contraposée que la proposition est vraie

Soit : $(x;y) \in \mathbb{R}^2$ et $y \neq 2x$; Par contraposée Montrons que : $\left(\frac{x+2y}{2x-y} = \frac{2}{3} \Rightarrow y = \frac{1}{8}x\right)$

PROF: ATMANI NAJIB

$$\frac{x+2y}{2x-y} = \frac{2}{3} \Rightarrow 3(x+2y) = 2(2x-y) \Rightarrow 3x+6y = 4x-2y \Rightarrow -x = -8y \Rightarrow y = \frac{1}{8}x$$

Par contraposée on a donc : $\forall (x; y) \in \mathbb{R}^2 \ et \ y \neq 2x; \left(y \neq \frac{1}{8}x \implies \frac{x+2y}{2x-y} \neq \frac{2}{3} \right)$

4) Nous raisonnons par équivalence :

Soit:
$$x \in \mathbb{R}_+^*$$
: $\frac{2x+1}{2\sqrt{x(x+1)}} > 1 \Leftrightarrow \left(\frac{2x+1}{2\sqrt{x(x+1)}}\right)^2 > 1^2 \Leftrightarrow (2x+1)^2 > 4x(x+1)$

$$\Leftrightarrow 4x^2 + 4x + 1 > 4x^2 + 4x \Leftrightarrow 1 > 0$$

Et puisque on a : 1>0 est une proposition vraie

Alors $P_4: \forall x \in \mathbb{R}_+^*$; $\frac{2x+1}{2\sqrt{x(x+1)}} > 1$ est une proposition vraie

5)
$$P_5$$
: « $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}); 0 \prec y^2 - x - 1$
« $0 \prec y^2 - x - 1 \Leftrightarrow x + 1 \prec y^2$

il suffit de prendre : x = -2 et on trouve : $(\forall y \in \mathbb{R})$; $-1 \prec y^2$ (vraie)

Par suite : la proposition P_5 : est vraie.

$$\overline{P_5}$$
: « $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}); 0 \ge y^2 - x - 1$

6) Montrons $P_6(n)$: « $\forall n \in \mathbb{N}$; $n^3 - n$ est divisible par 3» est vraie?

Utilisons un Raisonnement par récurrence :

Montrons $\exists k \in \mathbb{N} / n^3 - n = 3k$

1étapes : l'initialisation : Pour n=0 nous avons $0^3 - 0 = 0$ est un multiple de3

Donc P (0) est vraie.

L'hérédité : 2étapes : Supposons que P(n) soit vraie C'est-à-dire : $\exists k \in \mathbb{N} \ / \ n^3 - n = 3k$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que : $\exists k' \in \mathbb{N} / (n+1)^3 - (n+1) = 3k'$??

$$(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1 = (n^3 - n) + 3n^2 + 3n = 3k + 3(n^2 + n) = 3(k + n^2 + n) = 3k^2 + 3(n^2 + n) = 3(k + n^2 + n) = 3k^2 + 3(n^2 + n) = 3(k + n^2 + n) = 3(k + n^2$$

Avec $k' = k + n^2 + n \in \mathbb{N}$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a : $\forall n \in \mathbb{N}; n^3 - n$ est divisible par 3

 $P_6(n)$: « $\forall n \in \mathbb{N}$; $n^3 - n$ est divisible par 3» est vraie

Exercice2: (1,5pts): Montrer par disjonction des cas que : $\forall n \in \mathbb{N}$: $\frac{n^{2022} + 3 + (n+3)^{2023}}{2} \in \mathbb{N}$

Solution: il suffit de montrer que : $n^{2022} + 3 + (n+3)^{2023}$ est un entier pair

Remarque : Lorsque la démonstration d'une propriété dépend de la valeur de x, il est parfois utile de faire une disjonction de cas : on sépare le raisonnement suivant toutes les valeurs que peut prendre x.

On peut, par exemple, séparer les cas où x est un entier pair des cas où x est impair, ou encore séparer les cas où x est un réel positif des cas où il est strictement négatif.

PROF: ATMANI NAJIB

Premier cas: si n est pair: alors n^{2022} est aussi pair (comme produit de nombres pairs)

Alors : $n^{2022} + 3$ est impair (comme somme d'un nombre pair et un nombre impair)

D'autre part : n+3 est impair (comme somme d'un nombre pair et un nombre impair)

Alors: $(n+3)^{2023}$ est aussi impair (comme produit de nombres impairs)

Donc: $n^{2022} + 3 + (n+3)^{2023}$ est pair (comme somme de nombres impairs)

 $\underline{2 \text{ iem cas }}$: si n est impair : alors n^{2022} est aussi impair (comme produit de nombres impairs)

Alors : $n^{2022} + 3$ est pair (comme somme d'un nombre impair)

D'autre part : n+3 est pair (comme somme d'un nombre impair)

Alors: $(n+3)^{2023}$ est aussi pair (comme produit de nombres pairs)

Donc: $n^{2022} + 3 + (n+3)^{2023}$ est pair (comme somme de nombres pairs)

Par suite : d'après le principe par disjonction des cas :

$$\forall n \in \mathbb{N} : \frac{n^{2022} + 3 + (n+3)^{2023}}{2} \in \mathbb{N}$$

Exercice3: (1,5pts): Montrer par l'absurde que : $\forall n \in \mathbb{Z}$: $\frac{4n + 2023}{8} \notin \mathbb{Z}$

Solution: Par l'absurde, supposons que : $\exists n \in \mathbb{Z}$ tel que : $\frac{4n + 2023}{8} \in \mathbb{Z}$

C'est-à-dire : $\exists n \in \mathbb{Z} \text{ et } \exists m \in \mathbb{Z} \text{ tel que : } \frac{4n + 2023}{8} = m$

$$\frac{4n + 2023}{8} = m \Leftrightarrow 4n + 2023 = 8m \Rightarrow 2023 = 8m - 4n \Rightarrow 2023 = 2(4m - 2n) \Rightarrow 2023 = 2k$$

avec $k = 4m - 2n \in \mathbb{N} \implies 2023$ est pair

C'est une contradiction car on sait que : 2023 est impair

Ceci signifie : $\forall n \in \mathbb{Z}$: $\frac{4n + 2023}{8} \notin \mathbb{Z}$

Exercice4: (1,5pts): (1,5pts+1,5pts)

Montrer que : $\{x \in \mathbb{R} / |2x| + |x-5| \le 3\} \subset \{x \in \mathbb{R} / |3x-5| \le 3\}$

Solution: On pose: $A = \{x \in \mathbb{R} / |2x| + |x-5| \le 3\}$ et $B = \{x \in \mathbb{R} / |3x-5| \le 3\}$

Montrons donc que : $A \subset B$?

Conseils méthodologiques: Pour montrer que $E \subset F$ ou que E = F)

- ullet Pour montrer que $E \subset F$: on considère un élément quelconque de E et on montre qu'il est aussi élément de F
- ullet Pour montrer que E = F : On montre que :E \subset F et que F \subset E .

Soit $x \in \mathbb{R}$:

Supposons que : $x \in A$ et Montrons que : $x \in B$

$$x \in A \Longrightarrow |2x| + |x - 5| \le 3$$

Or on sait que : $|a+b| \le |a| + |b|$

Donc: $|2x+x-5| \le |2x| + |x-5| \le 3 \Rightarrow |2x+x-5| \le 3 \Rightarrow |3x-5| \le 3 \Rightarrow x \in B$

Donc: $\forall x \in \mathbb{R} : x \in A \Rightarrow x \in B$

Par suite : $A \subset B$

PROF: ATMANI NAJIB

Exercice5: (3,5pts): (0,5pts+1pts+0,5pts+0,5pts+1pts)

Soit l'application $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2 + x + 2$

1) Montrer que : $\forall x \in \mathbb{R} \ f(-1-x) = f(x)$

2) *f* est-elle injective?

3) Résoudre dans \mathbb{R} l'équation : $f(x) = -\frac{1}{4}$

4) f est-elle surjective?

5) Montrer que : $f(\mathbb{R}) = \left[\frac{7}{4}; +\infty\right]$

Solution : 1) Montrons que : f(-1-x)=f(x)

Soit $x \in \mathbb{R}$: $f(-1-x) = (-1-x)^2 + (-1-x) + 2 = (1+x)^2 + -1 - x + 2 = x^2 + 2x + 1 + -1 - x + 2 = x^2 + x + 2 = f(x)$

2)Si je trouve : $x \neq y$ et f(x) = f(y) on peut affirmer que f n'est pas injective.

On a: $\forall x \in \mathbb{R} f(-1-x) = f(x)$

Si je prends : x = 0

On a: f(-1) = f(0) mais $0 \neq -1$

Donc: f n'est pas injective

3) Résolution dans \mathbb{R} l'équation : f(x)=1

 $f(x) = 1 \Leftrightarrow x^2 + x + 2 = 1 \Leftrightarrow x^2 + x + 1 = 0$

 $\Delta = 1^2 - 4 \times 1 \times 1 = -3 < 0$

Donc: $S = \emptyset$

4)Par exemple : 1 n'a pas d'antécédents par f

C'est-à-dire : l'équation : f(x)=1 n'a pas de solutions dans $\mathbb R$.

Donc: f n'est pas surjective

5) Montrons que : $f(\mathbb{R}) = \left[\frac{7}{4}; +\infty\right[$: On raisonne par double inclusion :

a) Montrons que : $f(\mathbb{R}) \subset \left[\frac{7}{4}; +\infty\right]$

Soit : $x \in \mathbb{R}$ Montrons que : $f(x) \in \left[\frac{7}{4}; +\infty\right]$ C'est-à-dire Montrons que : $\frac{7}{4} \le f(x)$

 $f(x) - \frac{7}{4} = x^2 + x + 2 - \frac{7}{4} = x^2 + x + \frac{1}{4}$: $\Delta = 1^2 - 4 \times \frac{1}{4} \times 1 = 0$ Donc: $x^2 + x + \frac{1}{4} \ge 0$

Donc: $f(x) - \frac{7}{4} \ge 0$ C'est-à-dire $f(x) \in \left[\frac{7}{4}; +\infty\right[$ Alors: $f(\mathbb{R}) \subset \left[\frac{7}{4}; +\infty\right[$

a) Inversement montrons que : $\left[\frac{7}{4}; +\infty\right] \subset f(\mathbb{R})$

Soit: $y \in \left[\frac{7}{4}; +\infty\right]$: Montrons que: $\exists x \in \mathbb{R}$ tel que: f(x) = y?

 $f(x) = y \Leftrightarrow x^2 + x + 2 = y \Leftrightarrow x^2 + x + 2 - y = 0$. $\Delta = 1^2 - 4 \times (2 - y) = -7 + 4y$

PROF: ATMANI NAJIB

Comme: $\frac{7}{4} \le y$ alors: $-7 + 4y \ge 0$

Alors l'équation admet une ou deux solutions : $x = \frac{-1 + \sqrt{-7 + 4y}}{2} \in \mathbb{R}$ ou $x = \frac{-1 - \sqrt{-7 + 4y}}{2} \in \mathbb{R}$

Donc: $\exists x \in \mathbb{R}$ tel que: f(x) = y

Donc : $\left| \frac{7}{4}; +\infty \right| \subset f(\mathbb{R})$

Conclusion : $f(\mathbb{R}) = \left| \frac{7}{4}; +\infty \right|$

Exercice6: (3pts): Soit l'application f: $\left[-\frac{1}{4}; +\infty\right[\rightarrow \left[\frac{5}{2}; +\infty\right[$ $x \mapsto f(x) = \frac{5}{2} + \sqrt{x + \frac{1}{4}}$

Montrer que : f est bijective et déterminer sa bijection réciproque. f^{-1}

Solution : Soit : $y \in \left| \frac{5}{2}; +\infty \right|$: Résolvons dans : $\left[\frac{-1}{4}; +\infty \right]$ l'équation f(x) = y

Soit: $x \in \left[\frac{-1}{4}; +\infty\right[: f(x) = y \Leftrightarrow \frac{5}{2} + \sqrt{x + \frac{1}{4}} = y \Leftrightarrow \sqrt{x + \frac{1}{4}} = y - \frac{5}{2}\right]$

 $x + \frac{1}{4} \ge 0 \text{ car } x \in \left[\frac{-1}{4}; +\infty \right] \text{ et } y - \frac{5}{2} \ge 0 \text{ car } y \in \left[\frac{5}{2}; +\infty \right]$

 $f(x) = y \Leftrightarrow \left(\sqrt{x + \frac{1}{4}}\right)^2 = \left(y - \frac{5}{2}\right)^2 \Leftrightarrow x = \left(y - \frac{5}{2}\right)^2 - \frac{1}{4} \text{ Et on a : } \left(y - \frac{5}{2}\right)^2 - \frac{1}{4} \ge -\frac{1}{4} \text{ c'est-à-dire : } x \in \left|\frac{-1}{4}; +\infty\right|$

Donc: $\forall y \in \left| \frac{5}{2}; +\infty \right| \exists ! x \in \left| \frac{-1}{4}; +\infty \right| \text{ tel que} : f(x) = y$

Donc: f est bijective.

 $\begin{cases} f(x) = y \\ x \in \left[\frac{-1}{4}; +\infty\right] \end{cases} \Leftrightarrow \begin{cases} x = f^{-1}(y) = \left(y - \frac{5}{2}\right)^2 - \frac{1}{4} \\ y \in \left[\frac{5}{2}; +\infty\right] \end{cases} \quad \text{Donc} : \forall x \in \left[\frac{5}{2}; +\infty\right] ; f^{-1}(x) = \left(x - \frac{5}{2}\right)^2 - \frac{1}{4} \end{cases}$

PROF: ATMANI NAJIB

 $f^{-1}: \left[\frac{5}{2}; +\infty\right] \rightarrow \left[\frac{-1}{4}; +\infty\right]$

 $x \mapsto f^{-1}(x) = \left(x - \frac{5}{2}\right)^2 - \frac{1}{4}$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

