PROF: ATMANI NAJIB: 1er BAC Sciences Mathématiques BIOF

http://www.xriadiat.com

DS1: F

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Devoir surveiller n°1 sur les leçons suivantes :

LA LOGIQUE ET ENSEMBLES ET APPLICATIONS : Durée :2 heures

(La correction voir http://www.xriadiat.com)

Exercice1: (2pts): Ecrire la négation et donner les valeurs de vérités des propositions suivantes:

1) $P: (\forall x \in \mathbb{R}): x \neq 2 \Rightarrow x^2 \neq 4$

2) Q; $(\exists x \in \mathbb{R})$: $x < 2 \Rightarrow x^2 \ge 2019$

Exercice2: (2,5pts): (1,5pts+0,5pts+0,5pts)

Montrer que : $\forall n \in \mathbb{N}^*$: $2^{10n-7} + 3^{5n-2} - 2$ est un multiple de 11

Exercice3: (2,5pts): Montrer par disjonction des cas que : $\forall n \in \mathbb{N}$: $\frac{n^{2024}+1+\left(n+1\right)^{2025}}{2} \in \mathbb{N}$

Exercice4: (6pts): (1,5pts+1,5pts+1,5pts+1,5pts)

1) Montrer que : $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})$: $a \in \mathbb{Q}$ et $b \notin \mathbb{Q} \Rightarrow a + b \notin \mathbb{Q}$

2) Déterminera la négation de la proposions $P: (\forall a \in \mathbb{R})(\forall b \in \mathbb{R}): a \notin \mathbb{Q} \text{ et } b \notin \mathbb{Q} \Rightarrow a+b \notin \mathbb{Q}$ et étudier la valeur de vérité de la proposition : P

3) Soit : $k \in \{3;5;7;11;13;15\}$; Supposons que : $\sqrt{k} \in \mathbb{Q}$

a) Montrer qu'il existe $(a;b) \in \mathbb{N}^* \times \mathbb{N}^*$: tel que : $a \wedge b = 1$ et $\frac{k-1}{8} = \frac{a^2-1}{8} - \frac{b^2-1}{8}k$

b) Montrer que : $\frac{a^2-1}{8} \in \mathbb{N}$ et $\frac{b^2-1}{8} \in \mathbb{N}$

c)Trouver une contradiction et conclure

Exercice5: (2pts) : Soient A; B et C des parties d'un ensemble non vide E

Monter que : $\begin{cases} A \cap C \subset B \cap C \\ A - C \subset B - C \end{cases} \Leftrightarrow A \subset B$

 $f:[1;+\infty[\rightarrow[2;+\infty[$

PROF: ATMANI NAJIB

Exercice6: (5pts): (1pts+1pts+1pts+2pts) Soit l'application :

 $x \mapsto x + \frac{1}{x}$

1) Calculer: f(1) et f(2)

2) Montrer que f est injective

3) Montrer que f est surjective

4) Montrer que f est bijective et Déterminer f^{-1} la bijection réciproque de f.

C'est en forgeant que l'on devient forgeron : Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

