PROF: ATMANI NAJIB: 1er BAC Sciences Mathématiques BIOF

http://www.xriadiat.com

DL1: N

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Devoir libre1 de préparation pour le devoir surveillé n°1 sur les leçons suivantes :

- ✓ La logique
- ✓ ENSEMBLES ET APPLICATIONS

(La correction voir http://www.xriadiat.com)

Exercice1 : Donner la négation et la valeur de vérité de chacune des propositions suivantes.

1) $P: (\forall x \in \mathbb{R}); (\forall y \in \mathbb{R}) x \le y \Rightarrow x^2 \le y^2$

2) $Q: (\forall x \in [1.+\infty[); (\forall y \in [1.+\infty[)x \times y = 1 \Rightarrow x = y = 1)])$

3) $R: (\forall x \in \mathbb{R}^+) \sqrt{x+1} + \sqrt{x} \ge 1$

4) $T: (\forall a \in \mathbb{R})(\exists b \in \mathbb{R})/a^2 + 2b^2 \succ 4ab$

PROF: ATMANI NAJIB

Exercice2: Soient a etb deux réels

Montrer que : $a \in [0;2]$ et $b \in [0;2] \Rightarrow \frac{3}{16}|a-b| \le \left|\frac{3}{2+a} - \frac{3}{2+b}\right| \le \frac{3}{4}|a-b|$

Exercice3: Montrer que: $\forall a \in \mathbb{R}^+$

$$a^4 + 8a^3 + 18a^2 + 8a > 3 \implies a + 2 > \sqrt{3 + \sqrt{5 - \sqrt{2}}}$$

Exercice 4:1) Montrer que:

1) $\forall n \in \mathbb{N} : n^2 + n + 1$ est un nombre impair.

2) $\forall x \in \mathbb{R} : \sqrt{x^2 + 1} + \frac{1}{2}(x + 2) > 0$

3) $\forall x \in \mathbb{R} : |x-1| \le x^2 - x + 1$

Exercice 5: Soit : $(a;b;c) \in (\mathbb{R}^{+*})^3$ tel que : a+b+c=1

1) Montrer que : $\forall (a;b) \in (\mathbb{R}^{+*})^2$; $\frac{a^2+b^2}{ab} \geq 2$

2) Déduire que : $a^2 + b^2 + c^2 \ge \frac{1}{3}$

3) Montrer que : $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9$

Exercice6: Résoudre dans \mathbb{R} l'inéquation suivante : (I_1) : $\sqrt{5x^2+1} \succ 2x-1$

Exercice7: (Récurrence) Montrer que : $\forall n \in \mathbb{N}^*$: $\sum_{p=1}^n \frac{1}{p(p+1)} = \frac{n}{n+1}$.

Exercice8: 1) Montrer que : $\forall n \in \mathbb{N}^*$; $n^2 + 1$ n'est pas un carré parfait.

2) Montrer que : $\forall n \in \mathbb{N}$; $\sqrt{4n^2 + 5n + 3} \notin \mathbb{N}$

3) Soit $n \in \mathbb{N}^*$; Montrer que si n est un carré parfait, alors 2n ne peut pas être un carré parfait.

Exercice9: Soit l'ensemble : $E = \{(x, y) \in \mathbb{R}^2 / x^2 + xy - 2y^2 + 5 = 0\}$

- 1) a) Vérifier que : $\forall (x,y) \in \mathbb{R}^2 : x^2 + xy 2y^2 = (x-y)(x+2y)$
- b) Ecrire en extension l'ensemble $E \cap \mathbb{Z}^2$

PROF: ATMANI NAJIB: 1er BAC Sciences Mathématiques BIOF

- c) Montrer que : $E = \left\{ \left(\frac{2t^2 5}{3t}; \frac{-t^2 5}{3t} \right) / t \in \mathbb{R}^* \right\}$
- 2) Ecrire en compréhension les ensembles suivants : $A = \{0;1;4;9;16;...\}$ et $B = \{-1;\frac{1}{2};-\frac{1}{3};\frac{1}{4};...\}$

$$C = \{...; -5; -2; 1; 4; 7; ...\}$$

- 3) On pose : $A = \{x \in \mathbb{R} / |2x| + |x-5| \le 3\}$ et $B = \{x \in \mathbb{R} / |3x-5| \le 3\}$
- a) Montrons donc que : $A \subset B$?
- b) Donner Le complémentaire de l'ensemble B

Exercice10: Soient E et F deux ensembles et A et B deux parties respectives de E et F

- 1) Déterminer le complémentaire de $A \times F$ dans $E \times F$
- 2) Déterminer le complémentaire de $E \times F$ dans $E \times F$
- 3) Déterminer le complémentaire de $A \times B$ dans $E \times F$
- 4) Monter que : $A \times B = \emptyset \Leftrightarrow A = \emptyset$ ou $B = \emptyset$

Exercice11: Dire (en justifiant) pour chacune des applications suivantes si elles sont injectives,

surjectives, bijectives :1)
$$f: \mathbb{R} \to \mathbb{R}$$

2)
$$g: \mathbb{R}^r \to \mathbb{R}$$

3)
$$h: [0;1] \to [0;2]$$

$$x \mapsto \sqrt{x^2 - x + 1}$$

1)Montrer que : f est injective

$$\mathbb{R} \to \mathbb{R}$$

2) l'application $g: x \mapsto \sqrt{x^2 - x + 1}$ est-elle injective ? justifier

Exercice13 : Soit les applications :
$$f: \mathbb{R} \to]0;1] \qquad g: \mathbb{N} \to \mathbb{Q}$$
$$x \mapsto \frac{1}{x^2 - 2x + 2} \quad \text{et} \quad n \mapsto \frac{1}{n^2 - 2n + 3}$$

- 1)Montrer que *f* est surjective
- 2) g est-elle injective ? justifier

$$f:]-2; +\infty[\rightarrow]-\infty; 4[$$

Exercice14 : Soit l'application : $f:]-2; +\infty[\to]-\infty; 4[$ $x \mapsto \frac{4x}{r+2}$

$$x \mapsto \frac{4x}{x+2}$$

- 1) Montrer que *f* est injective
- 2) Montrer que f est surjective
- 3) En déduire que f est bijective et déterminer sa bijection réciproque. f^{-1}
- 4) a) Vérifier que : $\forall x \in]-2; +\infty[f(x) = 4 \frac{8}{x+2}]$
- b) Déterminer : $f([0;+\infty[) \text{ et } f^{-1}(]-\infty;2[)$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

