http://www.xriadiat.com/

PROF: ATMANI NAJIB

1er BAC Sciences Expérimentales BIOF 1er BAC Sciences Mathématiques BIOF

Série N°3: *LOGIQUE ET RAISONNEMENTS*

(La correction voir bhttp://www.xriadiat.com/)

Exercice1 : Déterminer parmi les propositions suivantes lesquelles sont vraies :

- 1) 136 est un multiple de 17 et 2 divise 167.
- 2) 136 est un multiple de 17 ou 2 divise 167.
- 3) $(\exists x \in \mathbb{R}; x+1=0)$ *et* $(\exists x \in \mathbb{R}; x+2=0)$
- 4) $(\forall x \in \mathbb{R}; x+1 \neq 0)$ ou $(\forall x \in \mathbb{R}; x+2 \neq 0)$
- $5"(\exists x \in \mathbb{R}^*)(\forall y \in \mathbb{R}^*)(\forall z \in \mathbb{R}^*): z xy = 0"$
- 6) " $(\forall y \in \mathbb{R}^*)(\exists x \in \mathbb{R}^*)(\forall z \in \mathbb{R}^*): z xy = 0$ "
- 7) " $(\forall y \in \mathbb{R}^*)(\forall z \in \mathbb{R}^*)(\exists x \in \mathbb{R}^*): z xy = 0$ "
- 8) " $(\forall a \in \mathbb{R})(\forall \varepsilon \succ 0): |a| \prec \varepsilon$ "
- 9) " $(\forall \varepsilon \succ 0)(\exists a \in \mathbb{R}) : |a| \prec \varepsilon$ "
- 10) « 89 est un nombre premier »
- 11) « $(25^3 + 24^3)^7$ est impair »
- 12) « Le nombre de diviseurs positifs de 72 est 12 diviseurs »

Exercice2: Soit *P* et *Q* deux propositions.

Montrer que les propositions : " $non(P \Rightarrow Q)$ " et "P et \overline{Q} "sont équivalentes.

Exercice3 : Donner la négation et la valeur de vérité de chacune des propositions suivantes.

- 1) $P: \ll (\exists x \in \mathbb{R})(\forall y \in \mathbb{R}); 3x^2 xy + 4y^2 \neq 0 \gg$
- 2) $Q: (\forall x \in \mathbb{R})(\forall y \in \mathbb{R}); x-y=1 \Rightarrow x \succ 1$ »
- 3) $R: \ll (\forall n \in \mathbb{N}) / \sqrt{n^2 + 2n} \notin \mathbb{N} \gg$

Exercice4: Montrer que : $\forall x \in \mathbb{R}$; $|x-1| \le \frac{1}{2} \Rightarrow \left| \frac{x-1}{2x+1} \right| \le \frac{1}{4}$

Exercice5: Montrer que : $\forall x \in \mathbb{R}$; $\forall y \in \mathbb{R}$: $x + y = 1 + xy \Rightarrow x = 1$ ou y = 1.

Exercice6: Soient: $x \in \mathbb{R}^+$ et $y \in \mathbb{R}^+$

Montrer que : $x \neq y$ et $xy \neq 4 \Rightarrow \frac{\sqrt{x}}{x+2} \neq \frac{\sqrt{y}}{y+2}$

Exercice7: Montrer que : $\forall x \in \mathbb{R}; \forall y \in \mathbb{R} : x \neq y \text{ et } x \times y \neq 1 \Rightarrow \frac{x}{x^2 + x + 1} \neq \frac{y}{y^2 + y + 1}$

Exercice8: Montrer que: $\forall x \ge 1$; $\forall y \ge 4$: $\sqrt{x-1} + 2\sqrt{y-4} = \frac{x+y}{2} \Rightarrow x = 2$ et y = 8.

Exercice9: Montrer par l'absurde que : $\forall x \in \mathbb{R}$: $\cos x \times \sin x \neq 1$

Exercice10: Montrer par l'absurde que : $\forall n \in \mathbb{N} : \sqrt{4n + 2026} \notin \mathbb{N}$

Exercice11: Montrer que : $n \in \mathbb{N} \Rightarrow \frac{n+1}{n+2} \notin \mathbb{N}$

Exercice12: Résoudre dans \mathbb{R} l'équation (1): $x^2 - |x-2| + 5 = 0$

PROF: ATMANI NAJIB

PROF: ATMANI NAJIB

Exercice13: (Equations avec des racines carrées)

Résoudre dans \mathbb{R} l'équation suivante : $\sqrt{x} = x - 2$

Exercice14: Résoudre dans \mathbb{R} les inéquations suivantes : (I): $\sqrt{3-x}+x < 0$

Exercice15: Résoudre dans \mathbb{R} l'inéquation (1): $|x-1|+2x-3\geq 0$

Exercice16: $x \in \mathbb{R}$ et $y \in \mathbb{R}$; Montrer que : $|x-y| \le 2\sqrt{x^2 + y^2 + xy}$

Exercice17: 1) Montrer que : $(\forall (a;b) \in (\mathbb{R}^+)^2)$: $a+b=0 \Leftrightarrow a=0$ et b=0

2) Montrer que : $\left(\forall (a;b) \in \left(\mathbb{R}^+\right)^2\right) \sqrt{a+1} - \sqrt{b+1} \prec \sqrt{a} - \sqrt{b} \Leftrightarrow a \succ b$

3) $x \in \mathbb{R}$ et $y \in \mathbb{R}$; Montrer que: $\sqrt{x^2+1} + \sqrt{y^2+1} = 2 \Leftrightarrow x = y = 0$

4)a) Soit : $(a;b) \in (\mathbb{R}^*)^2$ Montrer que : $\left(a + \frac{1}{a} = b + \frac{1}{b}\right) \Leftrightarrow \left(a = b \text{ ou } a = \frac{1}{b}\right)$

b) Déduire l'ensemble des solutions de l'équation (E) : $x^2 + \frac{1}{x^2} = \frac{17}{4}$

Exercice18: Montrer que : $\forall n \in \mathbb{N}$; $n^3 - n$ est divisible par 3

Exercice19: 1) Démontrer par récurrence que : $\forall n \in \mathbb{N}$; $\forall a \in \mathbb{R}^*_+$; $(1+a)^n \ge 1 + na$ (Inégalité de Bernoulli).

2) En déduire que : a) $\forall n \in \mathbb{N}$; $2^n \ge 1 + n$ b) $\forall n \in \mathbb{N}$; $3^n > n$ c) $\forall n \in \mathbb{N}^*$; $(1+n)^n \ge 2n^n$

Exercice20: Montrer que : $\forall n \in \mathbb{N}^*$; $\frac{13}{2^{4n} - 3^n}$ **Exercice21**: Montrer que : $\forall n \in \mathbb{N}^*$: $\sum_{k=1}^n \frac{k^2}{(2k-1)(2k+1)} = \frac{n \times (n+1)}{2(2n+1)}$

Exercice22: On considère dans \mathbb{R}^2 le système suivant : (I) $\begin{cases} (m+1)x + 3y = m \\ 3x + (m+1)y = 2 \end{cases}$

On va utiliser la Méthode des déterminants pour Résoudre ce système

1)a) Vérifier que : le déterminant du système est : $\Delta = (m-2)(m+4)$

b) En déduire les valeurs de m pour lesquelles $\Delta = 0$

2) Vérifier que : $\Delta_x = (m-2)(m+3)$ et $\Delta_y = -(m-2)$

3) Résoudre dans \mathbb{R}^2 et discuter suivant le paramètre m le système : (I)

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB

<u>2</u>

PROF: ATMANI NAJIB