http://www.xriadiat.com/

PROF: ATMANI NAJIB

1er BAC Sciences Expérimentales BIOF 1er BAC Sciences Mathématiques BIOF

Correction Série N°19: *LOGIQUE ET RAISONNEMENTS*

Exercice1 : Donner la négation des propositions suivantes :

$$P: (\forall x \in \mathbb{N}); x \neq 1 \Rightarrow x \succ 1$$

$$Q: ((\forall x \in \mathbb{R})(\exists \alpha \succ 0): |x| \prec \alpha \Rightarrow \left|\frac{x-1}{x+1} - 1\right| \prec \alpha$$

$$R: (\forall n \in \mathbb{N}^*)(\forall m \in \mathbb{N}^*); \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+m} \in \mathbb{N}$$

$$S: (\forall a \in \mathbb{R}^+)(\forall b \in \mathbb{R}^+); \sqrt{a+b} = \sqrt{a} + \sqrt{b}$$

$$T: (\forall x \in]0; +\infty[)(\forall y \in]0; +\infty[): \sqrt{xy} = \frac{2xy}{x+y}$$

$$U: \left(\forall x \in \left]0;1\right[\right)\left(\forall y \in \left]0;1\right[\right): \frac{1}{x} + \frac{1}{y} \prec 1 - xy$$

$$V: (\forall x \in]0;1[): \frac{2x}{x^2(1-x^2)} \prec 1$$

Solution: \overline{P} : $(\exists x \in \mathbb{N})$; $x \neq 1$ *et* $x \leq 1$

$$\overline{Q}$$
: $((\exists x \in \mathbb{R})(\forall \alpha \succ 0): |x| \prec \alpha \ et \left| \frac{x-1}{x+1} - 1 \right| \ge \alpha$

$$\overline{R}: (\exists n \in \mathbb{N}^*)(\exists m \in \mathbb{N}^*); \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{n+m} \notin \mathbb{N}$$

$$\overline{S}: (\exists a \in \mathbb{R}^+)(\exists b \in \mathbb{R}^+); \sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$

$$\overline{T}: \left(\exists x \in \left]0; +\infty\right[\right)\left(\exists y \in \left]0; +\infty\right[\right): \sqrt{xy} \neq \frac{2xy}{x+y}$$

$$\overline{U}: \Big(\exists x \in \left]0;1\right[\Big)\Big(\exists y \in \left]0;1\right[\Big): \frac{1}{x} + \frac{1}{y} \ge 1 - xy$$

$$\overline{V}: (\exists x \in]0;1[): \frac{2x}{x^2(1-x^2)} \ge 1$$

Exercice2 : Ecrire la négation et donner les valeurs de vérités des propositions suivantes :

1)
$$P: (\forall x \in \mathbb{R}): x \neq 2 \Rightarrow x^2 \neq 4$$

2)
$$Q$$
; $(\exists x \in \mathbb{R})$: $x < 2 \Rightarrow x^2 \ge 2019$

Solution :1)
$$P: (\forall x \in \mathbb{R}): x \neq 2 \Rightarrow x^2 \neq 4$$

$$\overline{P}: (\exists x \in \mathbb{R}): x \neq 2 \ et \ x^2 = 4$$

$$\overline{P}$$
: est une proposition vraie car : $(\exists x = -2 \in \mathbb{R})$: $-2 \neq 2$ et $(-2)^2 = 4$

Par suite :
$$P:(\forall x \in \mathbb{R}): x \neq 2 \Rightarrow x^2 \neq 4$$
 est fausse

2)
$$Q; (\exists x \in \mathbb{R}) : x < 2 \Rightarrow x^2 \ge 2019$$

$$Q$$
: est une proposition vraie car: $(\exists x = -1000 \in \mathbb{R}): -1000 < 2 \Rightarrow x^2 \ge 2019$

$$\overline{Q}$$
; $(\forall x \in \mathbb{R})$: $x < 2$ et $x^2 < 2019$ est fausse

PROF: ATMANI NAJIB

Exercice3: Cocher la ou les bonne(s)

- \square « Il existe $x \in \mathbb{R}$, il existe $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \square « Pour tout $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \square « Pour tout $x \in \mathbb{R}$, il existe $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \square « Il existe $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \square « Pour tout $x \in \mathbb{R}$ il existe $y \in \mathbb{R}$, $x \prec y$ » est équivalent à « Il existe $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $x \prec y$ »

Solution:

- \boxtimes « Il existe $x \in \mathbb{R}$, il existe $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \square « Pour tout $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \boxtimes « Pour tout $x \in \mathbb{R}$, il existe $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \square « Il existe $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $x \prec y$ » est une proposition vraie
- \square « Pour tout $x \in \mathbb{R}$ il existe $y \in \mathbb{R}$, $x \prec y$ » est équivalent à « Il existe $x \in \mathbb{R}$, pour tout $y \in \mathbb{R}$, $x \prec y$ »

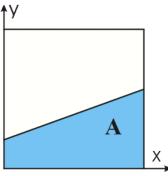
Exercice4 : Écrire à l'aide de quantificateurs les propositions suivantes :

- 1)Le carré de tout réel est positif.
- 2) Certains réels sont strictement supérieurs à leur carré

Solution :1) $\forall x \in \mathbb{R}; x^2 \ge 0$

 $2) \exists x \in \mathbb{R} \ ; \ x \ge x^2$

Exercice5: Pour chacune des propositions, en correspondance avec l'ensemble A (en bleu) suggéré par le dessin ci-dessous, indiquez votre opinion concernant le fait que les propriétés sont vérifiées ou non.



Quelles sont les assertions vraies ?

 $f \ " \forall x ; \exists y \ (x; y) \in A "$

 $f " \forall y ; \exists x (x; y) \in A "$

 $f " \exists y ; \forall x (x; y) \in A "$

 $f "\exists x ; \forall y (x; y) \in A "$

Solution:

- \boxtimes " $\forall x ; \exists y (x; y) \in A$ " chaque verticale contient un point dans A
- $f " \forall y ; \exists x (x; y) \in A "$ certaines horizontales ne contiennent pas de point de A

 \boxtimes " $\exists y ; \forall x (x; y) \in A$ "

 $f "\exists x ; \forall y (x; y) \in A "$

Exercice6: Écrire sous forme conjonctive ou sous forme disjonctive les propositions ci-dessous :

PROF: ATMANI NAJIB

1) "
$$(\overline{P} \ et \ Q) \Rightarrow R$$
"

2) "
$$\left(\overline{P \ ou \ \overline{Q}}\right) et(R \Rightarrow S)$$

Solution: La méthode est de remplacer les symboles \Rightarrow ; \Leftrightarrow par leur équivalent et d'utiliser les lois

$$\operatorname{de\ Morgan}: \left(\overline{P\ ou\ Q}\ \right) \equiv \left(\overline{P}\ et\ \overline{Q}\ \right)\ ; \ \left(\overline{P\ et\ Q}\ \right) \equiv \left(\overline{P}\ ou\ \overline{Q}\ \right)$$

1) "
$$(\overline{P} \ et \ Q) \Rightarrow R$$
" est la même chose que : " $(\overline{\overline{P} \ et \ Q}) ou \ R$ "

On enlève le non externe, et on trouve : " $\left(\begin{array}{cc} P & ou \ \overline{Q} \end{array} \right) ou \ R$ "

C'est une forme disjonctive.

2) "
$$\left(\overline{P \ ou \ \overline{Q}}\right)$$
 et $\left(R \Rightarrow S\right)$ "

On enlève le
$$\Longrightarrow$$
 et on trouve donc : " $\left(\overline{P\ ou\ \overline{Q}}\ \right)$ et $\left(\overline{R}\ ou\ S\ \right)$ "

On enlève ensuite le non et on trouve : " $(\overline{P} \ et \ Q \)et(\overline{R} \ ou S)$ "

Exercice7: Donner la valeur de vérité

De la proposition suivante : $F"\exists !x \in \mathbb{R}/2x^2-1=3"$

Solution : $F''\exists !x \in \mathbb{R}/2x^2-1=3''$

Se lit « il existe un unique $x \in \mathbb{R}/2x^2-1=3$ "»

$$2x^2-1=3 \Leftrightarrow 2x^2=4 \Leftrightarrow x^2=2 \Leftrightarrow x=\sqrt{2}$$
 ou $x=-\sqrt{2}$ (il donc 2 solutions)

Donc : La proposition : $F "\exists ! x \in \mathbb{R} / 2x^2 - 1 = 3"$ est fausse

Exercice8: Montrer que La proposition $P: (\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) : x^2 + y^2 \ge x + y$ est fausse :

Solution: sa négation est : \overline{P} : $(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})$: $x^2 + y^2 \prec x + y$

En posant : x=1 et $y=\frac{1}{2}$ on aura : $1^2+\left(\frac{1}{2}\right)^2 \prec 1+\frac{1}{2}$ c a d $\frac{5}{4} \prec \frac{6}{4}$ donc La proposition \overline{P} est vraie Donc

P est fausse.

Exercice9: Montrer que La proposition $P: (\forall (a;b) \in \mathbb{R}^2): \sqrt{a^2+b^2} = a+b$ est fausse :

Solution : sa négation est : \overline{P} : $(\exists (a;b) \in \mathbb{R}^2)$: $\sqrt{a^2+b^2} \neq a+b$

En posant :
$$a=4$$
 et $b=3$ on aura : $\sqrt{a^2+b^2}=\sqrt{16+9}=\sqrt{25}=5$ et $a+b=4+3=7$

Donc La proposition \overline{P} est vraie donc P est fausse

Exercice10 : Démontrer en utilisant le Raisonnement par implications successives que :

$$\forall (x;y) \in \mathbb{R}^2; (xy^2 - x^2y = y - x \Rightarrow x = y \text{ ou } xy = 1)$$

Solution: Soit: $(x; y) \in \mathbb{R}^2$;

Supposons que : $xy^2 - x^2y = y - x$ et montrons que : x = y ou xy = 1

$$xy^2 - x^2y = y - x \Rightarrow xy(y - x) = y - x \Rightarrow xy(y - x) - (y - x) = 0 \Rightarrow (y - x)(xy - 1) = 0$$
$$\Rightarrow y - x = 0 \text{ ou } xy - 1 = 0 \Rightarrow y = x \text{ ou } xy = 1$$

Donc: $\forall (x; y) \in \mathbb{R}^2$; $(xy^2 - x^2y = y - x \Rightarrow x = y \text{ ou } xy = 1)$

Exercice11 : Démontrer en utilisant la contraposée que la proposition suivante est vraie :

$$\forall x \in \mathbb{R} - \{-1\}; \left(x \neq \frac{1}{2} \Rightarrow \frac{3x}{x+1} \neq 1\right)$$

Solution : Démontrons en utilisant la contraposée que la proposition suivante est vraie :

PROF: ATMANI NAJIB

3

$$S: \ll \forall x \in \mathbb{R} - \{-1\}; \left(x \neq \frac{1}{2} \Rightarrow \frac{3x}{x+1} \neq 1\right)$$

Soit :
$$x \in \mathbb{R} - \{-1\}$$
 ; Par contraposée Montrons que : $\left(\frac{3x}{x+1} = 1 \Rightarrow x = \frac{1}{2}\right)$

$$\frac{3x}{x+1} = 1 \Rightarrow 3x = x+1 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}$$

Par contraposée on a donc :
$$\forall x \in \mathbb{R} - \{-1\}; \left(x \neq \frac{1}{2} \Rightarrow \frac{3x}{x+1} \neq 1\right)$$

Exercice12: Démontrer en utilisant la contraposée que : $\forall x \in \mathbb{R}$; $(x \neq -2 \Rightarrow x^3 + 2x^2 + x + 2 \neq 0)$

Solution : Démontrons en utilisant la contraposée que la proposition suivante est vraie :

$$\forall x \in \mathbb{R}; (x \neq -2 \Rightarrow x^3 + 2x^2 + x + 2 \neq 0)$$

Soit :
$$x \in \mathbb{R}$$
 ; Par contraposée Montrons que : $(x^3 + 2x^2 + x + 2 = 0 \Rightarrow x = -2)$

Supposons que :
$$x^3 + 2x^2 + x + 2 = 0$$
 Alors : $x^2(x+2) + (x+2) = 0$

Alors:
$$(x+2)(x^2+1)=0$$

Alors:
$$x+2=0$$
 ou $x^2+1=0$

Alors:
$$x = -2$$
 ou $x^2 = -1$ (impossible)

Alors:
$$x = -2$$

Donc:
$$(x^3 + 2x^2 + x + 2 = 0 \Rightarrow x = -2)$$

Par contraposée on a donc :
$$\forall x \in \mathbb{R}$$
; $(x \neq -2 \Rightarrow x^3 + 2x^2 + x + 2 \neq 0)$

Exercice13: Montrer par récurrence que : $\forall n \in \mathbb{N}; 10^n - 1$ est divisible par 9

Solution: Montrons
$$\exists k \in \mathbb{N} / 10^n - 1 = 9k$$

1étapes : Pour n=0 nous avons
$$10^{0} - 1 = 1 - 1 = 0$$
 est un multiple de9

Donc P (0) est vraie.

2étapes : supposons que :
$$\exists k \in \mathbb{N} / 10^n - 1 = 9k$$

3étapes : Montrons alors que :
$$\exists k' \in \mathbb{N} / 10^{n+1} - 1 = 9k'$$
 ??

$$10^{n+1} - 1 = 10^n \times 10 - 1 = 10^n \times (9+1) - 1 = 10^n \times 9 + 10^n - 1 = 10^n \times 9 + 9k$$

$$10^{n+1} - 1 = 10^n \times 10 - 1 = 10^n \times (9+1) - 1 = 10^n \times 9 + 10^n - 1 = 10^n \times 9 + 9k$$
 Avec $k' = k + n^2 + n + 1$

Conclusion. Par le principe de récurrence on a :

$$\forall n \in \mathbb{N}; 10^n - 1$$
 est divisible par 9

Exercice14: Montrer que pour tout
$$n \in \mathbb{N}^*$$
: $1+3+5+...+(2n+1)=(n+1)^2$.

Nous allons démontrer par récurrence que P(n) est vraie pour tout
$$n \in \mathbb{N}^*$$
.

1étapes : l'initialisation : Pour n=1 nous avons
$$1+3=4$$
 et $(1+1)^2=4$ donc $4=4$.

Donc P(0) est vraie.

2étapes : Supposons que :1+3+5+...+
$$(2n+1)$$
= $(n+1)^2$

3étapes : Montrons alors que :
$$1+3+5+...+(2n+1)+(2n+3)=(n+2)^2$$
 ??

On a:
$$1+3+5+...+(2n+1)+(2n+3)=(1+3+5+...+(2n+1))+(2n+3)$$

et on a d'après l'hypothèse de récurrence:
$$1+3+5+...+(2n+1)=(n+1)^2$$

Donc:
$$1+3+5+...+(2n+1)+(2n+3)=(n+1)^2+(2n+3)$$

$$1+3+5+...+(2n+1)+(2n+3)=n^2+2n+1+2n+3=n^2+4n+4$$

Donc:
$$1+3+5+...+(2n+1)+(2n+3)=(n+2)^2$$

Conclusion : Par le principe de récurrence on a : $1+3+5+...+(2n+1)=(n+1)^2 \ \forall n \in \mathbb{N}^*$

Exercice15: Soient a et b deux entiers naturels tels que $0 \prec b \prec a$.

Montrer que :
$$\frac{a^2+b^2}{a^2-b^2} \notin \mathbb{N}$$

Solution : Soient a et b deux entiers naturels tels que $0 \prec b \prec a$.

Par l'absurde, supposons que :
$$\frac{a^2+b^2}{a^2-b^2} \in \mathbb{N}$$

C'est-à-dire :
$$\exists n \in \mathbb{N}$$
 tel que : $\frac{a^2+b^2}{a^2-b^2}=n$

$$\frac{a^2 + b^2}{a^2 - b^2} = n \iff a^2 + b^2 = na^2 - nb^2 \iff nb^2 + b^2 = na^2 - a^2 \iff b^2(n+1) = a^2(n-1) \iff n+1 = \frac{a^2}{b^2}(n-1)$$

$$\Rightarrow (n+1)(n-1) = \frac{a^2}{b^2}(n-1)^2 \Rightarrow n^2 - 1 = \left(\frac{a}{b}(n-1)\right)^2 \quad \text{Posons} : \frac{a}{b}(n-1) = m \Rightarrow n^2 = m^2 + 1$$

- Si: $m \notin \mathbb{N}$ et puisque $m \in \mathbb{Q}$ alors $m^2 \notin \mathbb{N}$ $\Rightarrow \boxed{n^2 1 \notin \mathbb{N}}$ or $n \in \mathbb{N}$ et donc $\boxed{n^2 1 \in \mathbb{N}}$ contradiction
- Si: $m \in \mathbb{N}$: On a: $n^2 m^2 = 1 \Rightarrow (n m)(n + m) = 1$ avec: $n + m \in \mathbb{N}$ et $n m \in \mathbb{N}$

Remarque : (n-m)(n+m)=1 et $n+m\in\mathbb{N} \Rightarrow n-m\geq 0$ et puisque $m\in\mathbb{N}$ et $n\in\mathbb{N}$

Alors:
$$n-m \in \mathbb{N}$$

Donc:
$$n+m \in \mathbb{N}$$
 et $n-m \in \mathbb{N}$ et $(n-m)(n+m)=1$

$$\mathsf{Donc}: \begin{cases} n+m=1 \\ n-m=1 \end{cases} \Rightarrow n+m+n-m=3 \Rightarrow 2n=2 \Rightarrow \boxed{n=1 \Rightarrow p=1} \;\; \mathsf{et \; puisque}: \; \frac{a^2+b^2}{a^2-b^2} = n$$

Alors:
$$\frac{a^2+b^2}{a^2-b^2} = 1 \Rightarrow a^2+b^2 = a^2-b^2 \Rightarrow 2b^2 = 0 \Rightarrow b^2 = 0 \Rightarrow b = 0$$
 contradiction avec: $0 < b < a$

Donc : contradiction dans les deux cas :
$$m \in \mathbb{N}$$
 et $m \notin \mathbb{N}$ par suite : $\frac{a^2 + b^2}{a^2 - b^2} \notin \mathbb{N}$

Exercice16: On considère la proposition suivante :
$$P_n$$
 " $\forall n \in \mathbb{N}^* - \{1\}$: $\left(1 - \frac{1}{n^2}\right)^n \left(1 + \frac{1}{n}\right) < 1$ "

1)Montrer que :
$$P_n \Leftrightarrow . \forall n \in \mathbb{N}^* - \{1\}; \left(1 + \frac{1}{n^2 - 1}\right)^n > 1 + \frac{1}{n}$$
"

2) Comparer:
$$\left(1+\frac{1}{n^2}\right)^n$$
 et $\left(1+\frac{1}{n^2-1}\right)^n$; $\forall n \in \mathbb{N}^* - \{1\}$

3)a) Montrer que :
$$\forall x \in \mathbb{R}_+^* \quad \forall n \in \mathbb{N}^* - \{1\} : (1+x)^n > 1+nx$$

b) Déduire que : la proposition
$$P_n$$
 est vraie

Solution: 1) par des équivalences successives

Montrons que :
$$P_n \Leftrightarrow . \forall n \in \mathbb{N}^* - \{1\}; \left(1 + \frac{1}{n^2 - 1}\right)^n > 1 + \frac{1}{n}$$
"

$$\operatorname{Soit} n \in \mathbb{N}^* - \{1\} : P_n \iff \left(1 - \frac{1}{n^2}\right)^n \left(1 + \frac{1}{n}\right) < 1 \iff \left(\frac{n^2 - 1}{n^2}\right)^n \left(1 + \frac{1}{n}\right) < 1$$

On a:
$$n \in \mathbb{N}^* - \{1\} \Leftrightarrow n \ge 2 \Leftrightarrow n^2 \ge 4 \Rightarrow n^2 > 1 \Rightarrow n^2 - 1 > 0 \Rightarrow \frac{n^2 - 1}{n^2} > 0$$

$$P_n \Leftrightarrow \left(1 + \frac{1}{n}\right) < \left(\frac{n^2}{n^2 - 1}\right)^n \Leftrightarrow \left(1 + \frac{1}{n}\right) < \left(\frac{n^2 - 1 + 1}{n^2 - 1}\right)^n \Leftrightarrow \left(1 + \frac{1}{n}\right) < \left(\frac{n^2 - 1}{n^2 - 1} + \frac{1}{n^2 - 1}\right)^n$$

$$\Leftrightarrow \left(1+\frac{1}{n}\right) < \left(1+\frac{1}{n^2-1}\right)^n \text{ Par suite}: P_n \Leftrightarrow . " \forall n \in \mathbb{N}^* - \left\{1\right\}; \left(1+\frac{1}{n^2-1}\right)^n > 1+\frac{1}{n} "$$

2) Comparons:
$$\left(1+\frac{1}{n^2}\right)^n$$
 et $\left(1+\frac{1}{n^2-1}\right)^n$; $\forall n \in \mathbb{N}^* - \{1\}$

On a:
$$n \ge 2 \Leftrightarrow n^2 \ge 4 \Rightarrow n^2 > 1 \Rightarrow n^2 - 1 > 0$$

On a aussi :
$$n^2 > n^2 - 1 \Rightarrow \frac{1}{n^2} \prec \frac{1}{n^2 - 1} \Rightarrow 1 + \frac{1}{n^2} \prec 1 + \frac{1}{n^2 - 1} \Rightarrow \left(1 + \frac{1}{n^2}\right)^n \prec \left(1 + \frac{1}{n^2 - 1}\right)^n$$

Donc:
$$\forall n \in \mathbb{N}^* - \{1\}$$
; $\left(1 + \frac{1}{n^2}\right)^n \prec \left(1 + \frac{1}{n^2 - 1}\right)^n$

3)a) Montrer par récurrence que :
$$\forall x \in \mathbb{R}_+^*$$
; $\forall n \in \mathbb{N}^* - \{1\}$: $(1+x)^n > 1+nx$

Notons H(n) La proposition suivante : «
$$(1+x)^n > 1+nx$$
 »

Soit :
$$x \in \mathbb{R}_{+}^{*}$$
; Nous allons démontrer par récurrence que H(n) est vraie pour tout $n \in \mathbb{N}^{*} - \{1\}$.

$$(1+x)^2 = x^2 + (2x+1)$$
 et $x^2 > 0$ car $x \in \mathbb{R}_+^*$

Donc:
$$(1+x)^2 > 1+2x$$
.

Donc/ H(2) est vraie.

L'hérédité : 2étapes : Hypothèse de récurrence : Soient :
$$x \in \mathbb{R}_+^*$$
 ; $n \in \mathbb{N}^* - \{1\}$:

Supposons que H(n) soit vraie c'est-à-dire :
$$(1+x)^n > 1+nx$$

Montrons alors que :
$$(1+x)^{n+1} > 1+(n+1)x$$
 ??

On a :
$$(1+x)^n \ge 1+nx$$
 d'après l'hypothèse de récurrence donc $(1+x)^n (1+x) \ge (1+nx)(1+x)$

Donc:
$$(1+x)^{n+1} \ge 1 + x + nx + nx^2$$

Donc:
$$(1+x)^{n+1} \ge (1+(1+n)x) + nx^2$$

Donc:
$$(1+x)^{n+1} \ge (1+(1+n)x)$$
 car

$$(1+(1+n)x)+nx^2 \ge 1+(1+n)x$$
 (On pourra faire la différence)

Conclusion : Par le principe de récurrence H(n) est vraie pour tout
$$n \in \mathbb{N}^* - \{1\}$$
, c'est-à-dire :

$$\forall x \in \mathbb{R}_+^*; \forall n \in \mathbb{N}^* - \{1\} : (1+x)^n > 1 + nx$$

b) Déduisons que : la proposition
$$P_n$$
 est vraie

On a :
$$P_n \Leftrightarrow . \forall n \in \mathbb{N}^* - \{1\}; \left(1 + \frac{1}{n^2 - 1}\right)^n > 1 + \frac{1}{n}$$
 et d'après 2) on a :

$$\forall n \in \mathbb{N}^* - \{1\} \; ; \left(1 + \frac{1}{n^2}\right)^n \prec \left(1 + \frac{1}{n^2 - 1}\right)^n$$

Si je montre que : $1 + \frac{1}{n} \prec \left(1 + \frac{1}{n^2}\right)^n$ on peut déduire le résultat.

D'après 3) a) on a : $\forall x \in \mathbb{R}_+^* \quad \forall n \in \mathbb{N}^* - \{1\} : (1+x)^n > 1+nx$

$$\text{On prend}: \ x = \frac{1}{n^2} \succ 0 \ \text{ alors}: \left(1 + \frac{1}{n^2}\right)^n > 1 + n \frac{1}{n^2} \Longrightarrow \left(1 + \frac{1}{n^2}\right)^n > 1 + \frac{1}{n} \ : \ \forall n \in \mathbb{N}^* - \{1\}$$

Donc: on aura: $1 + \frac{1}{n} \prec \left(1 + \frac{1}{n^2}\right)^n \text{ et } \left(1 + \frac{1}{n^2}\right)^n \prec \left(1 + \frac{1}{n^2 - 1}\right)^n$

Par suite : "
$$\forall n \in \mathbb{N}^* - \{1\}; \left(1 + \frac{1}{n^2 - 1}\right)^n > 1 + \frac{1}{n}$$
 "est vrais

 $\text{Et comme}: \ P_n \Longleftrightarrow . \text{"} \forall n \in \mathbb{N}^* - \left\{1\right\}; \left(1 + \frac{1}{n^2 - 1}\right)^n > 1 + \frac{1}{n} \text{ " alors aussi la proposition } P_n \text{ est vraie}.$

Exercice17: 1) Montrer que : $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R})$: $a \in \mathbb{Q}$ et $b \notin \mathbb{Q} \Rightarrow a + b \notin \mathbb{Q}$

- 2) Déterminera la négation de la proposions $P: (\forall a \in \mathbb{R})(\forall b \in \mathbb{R}): a \notin \mathbb{Q} \text{ et } b \notin \mathbb{Q} \Rightarrow a+b \notin \mathbb{Q}$ et étudier la valeur de vérité de la proposition : P
- 3) Soit : $k \in \{3; 5; 7; 11; 13; 15\}$; Supposons que : $\sqrt{k} \in \mathbb{Q}$
- a) Montrer qu'il existe $(a;b) \in \mathbb{N}^* \times \mathbb{N}^*$: tel que : $a \wedge b = 1$ et $\frac{k-1}{8} = \frac{a^2-1}{8} \frac{b^2-1}{8}k$
- b) Montrer que : $\frac{a^2-1}{8} \in \mathbb{N}$ et $\frac{b^2-1}{8} \in \mathbb{N}$
- c)Trouver une contradiction et conclure
- 4) Montrer que : $P: (\forall a \in \mathbb{Q}^+) (\forall b \in \mathbb{Q}^+) : \sqrt{a} + \sqrt{b} \in \mathbb{Q}^+ \Rightarrow \sqrt{a} \in \mathbb{Q} \text{ et } \sqrt{b} \in \mathbb{Q}$

1) Montrons que : $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}): a \in \mathbb{Q} \text{ et } b \notin \mathbb{Q} \Rightarrow a + b \notin \mathbb{Q}$

Soient : $(a \in \mathbb{R})$ et $(b \in \mathbb{R})$: Supposons que : $a \in \mathbb{Q}$ et $b \notin \mathbb{Q}$ et montrons que $a + b \notin \mathbb{Q}$

Nous raisonnons par l'absurde en supposant que $a+b \in \mathbb{Q}$

Donc: $a+b \in \mathbb{Q}$ et $-a \in \mathbb{Q}$

Alors : $a+b-a\in\mathbb{Q}$ c'est-à-dire : $b\in\mathbb{Q}$; Nous obtenons donc une contradiction car $b\notin\mathbb{Q}$

Par suite : $a+b \notin \mathbb{Q}$

2) $P: (\forall a \in \mathbb{R}) (\forall b \in \mathbb{R}) : a \notin \mathbb{Q} \text{ et } b \notin \mathbb{Q} \Rightarrow a + b \notin \mathbb{Q}$

 $\overline{P}: (\exists a \in \mathbb{R})(\exists b \in \mathbb{R}): a \notin \mathbb{Q} \ et \ b \notin \mathbb{Q} \ et \ a+b \in \mathbb{Q}$

$$(\exists a = \sqrt{2} \in \mathbb{R})(\exists b = 1 - \sqrt{2} \in \mathbb{R}): \sqrt{2} \notin \mathbb{Q} \ et - \sqrt{2} \notin \mathbb{Q} \ et \ \sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q}$$

Donc; La proposition \bar{P} est vraie donc \bar{P} est fausse

- 3) Soit : $k \in \{3;5;7;11;13;15\}$; Supposons que : $\sqrt{k} \in \mathbb{Q}$
- a) Montrons qu'il existe : $(a;b) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que : $a \wedge b = 1$ et $\frac{k-1}{8} = \frac{a^2-1}{8} \frac{b^2-1}{8}k$

$$\sqrt{k} \in \mathbb{Q} \Rightarrow \exists (a;b) \in \mathbb{N}^* \times \mathbb{N}^* / \sqrt{k} = \frac{a}{b} \text{ avec} : a \land b = 1$$

$$\Rightarrow \exists (a;b) \in \mathbb{N}^* \times \mathbb{N}^* / k = \frac{a^2}{b^2} \Rightarrow kb^2 = a^2 \Rightarrow 0 = a^2 - kb^2 \Rightarrow k - 1 = a^2 - kb^2 + k - 1$$

PROF: ATMANI NAJIB

<u>7</u>

$$\Rightarrow k-1 = a^2 - 1 - (b^2 - 1)k \Rightarrow \frac{k-1}{8} = \frac{a^2 - 1}{8} - \frac{b^2 - 1}{8}k$$

b) Pour montrer que : $\frac{a^2-1}{8} \in \mathbb{N}$ et $\frac{b^2-1}{8} \in \mathbb{N}$: Il suffit de montrer que : b est impair

Nous raisonnons par l'absurde en supposant que b est pair

Donc: b^2 est pair $\Rightarrow kb^2$ est pair $\Rightarrow a^2$ est pair (car:) $\Rightarrow a$ est pair

Nous obtenons donc une contradiction car : $a \wedge b = 1$

Par suite : b est impair $\Rightarrow b^2$ est impair et $kb^2 = a^2$ et $k \in \{3,5,7,11,13,15\}$ est impair

 $\Rightarrow a^2$ est impair $\Rightarrow a$ est impair

a est impair et b est impair $\Rightarrow \exists (k;k'') \in \mathbb{N} \times \mathbb{N} / a = 2k+1 \ et \ b = 2k'+1$

Donc: $a^2 = (2k+1)^2 = 4k^2 + 4k + 1$ et $b^2 = (2k'+1)^2 = 4k'^2 + 4k' + 1$

Donc: $a^2 - 1 = 4k(k+1)$ et $a^2 - 1 = 4k'(k'+1)$

Donc: $\frac{a^2-1}{8} = \frac{4k(k+1)}{8} = \frac{k(k+1)}{2}$ et $\frac{b^2-1}{8} = \frac{4k'(k'+1)}{8} = \frac{k'(k'+1)}{2}$ or : k(k+1) = 2n (le produit de deux

nombres consécutifs) . D'où : $\frac{a^2-1}{8} \in \mathbb{N}$ et $\frac{b^2-1}{8} \in \mathbb{N}$

c)Trouvons une contradiction et concluons :

On a: $\frac{a^2-1}{8} \in \mathbb{N}$ et $\frac{b^2-1}{8} \in \mathbb{N}$ donc: $\frac{a^2-1}{8} \in \mathbb{N}$ et $\frac{b^2-1}{8} k \in \mathbb{N}$

Donc: $\frac{k-1}{8} = \frac{a^2-1}{8} - \frac{b^2-1}{8}k \in \mathbb{Z}$ et comme: $\frac{k-1}{8} \ge 0$ car $k \in \{3;5;7;11;13;15\} \ge 1$

 $\mathsf{Donc}: \frac{k-1}{8} \in \mathbb{N} \ \underline{\mathsf{absurde}} \ \mathsf{car}: \ k-1 \in \left\{2; 4; 6; 10; 12; 14\right\} \Rightarrow \frac{k-1}{8} \in \left\{\frac{1}{4}; \frac{1}{2}; \frac{3}{4}; \frac{5}{4}; \frac{3}{2}; \frac{7}{4}\right\} \quad \mathsf{Donc}: \ \frac{k-1}{8} \notin \mathbb{N}$

Conclusion: $\forall k \in \{3, 5, 7, 11, 13, 15\}$; $\sqrt{k} \in \mathbb{Q}$

4) Montrons que : $P: (\forall a \in \mathbb{Q}^+) (\forall b \in \mathbb{Q}^+) : \sqrt{a} + \sqrt{b} \in \mathbb{Q}^+ \Rightarrow \sqrt{a} \in \mathbb{Q} \text{ et } \sqrt{b} \in \mathbb{Q}$

Soient : $(a \in \mathbb{Q}^+)$ et $(b \in \mathbb{Q}^+)$: Supposons que : $\sqrt{a} + \sqrt{b} \in \mathbb{Q}^+$

Si $a \neq b$ alors : $\frac{\left(\sqrt{a} + \sqrt{b}\right)\left(\sqrt{a} - \sqrt{b}\right)}{\sqrt{a} - \sqrt{b}} \in \mathbb{Q}^+$

Alors: $\frac{a-b}{\sqrt{a}-\sqrt{b}} \in \mathbb{Q}^+$ donc: $\frac{1}{a-b} \frac{a-b}{\sqrt{a}-\sqrt{b}} \in \mathbb{Q}$ car $\frac{1}{a-b} \in \mathbb{Q}$

 $\mathsf{Donc}: \frac{1}{\sqrt{a} - \sqrt{b}} \in \mathbb{Q} \Rightarrow \sqrt{a} - \sqrt{b} \in \mathbb{Q} \ \, \mathsf{et\ comme}\, \sqrt{a} + \sqrt{b} \in \mathbb{Q} \ \, \Rightarrow \sqrt{a} - \sqrt{b} + \sqrt{a} + \sqrt{b} \in \mathbb{Q}$

 $\Rightarrow 2\sqrt{a} \in \mathbb{Q} \Rightarrow \frac{1}{2}2\sqrt{a} \in \mathbb{Q} \Rightarrow \sqrt{a} \in \mathbb{Q} \text{ et comme} \sqrt{a} + \sqrt{b} \in \mathbb{Q} \text{ alors} : \sqrt{a} + \sqrt{b} - \sqrt{a} \in \mathbb{Q}$

Donc: $\sqrt{b} \in \mathbb{Q}$

Si $a \neq b$ alors : $2\sqrt{a} \in \mathbb{Q}^+ \Rightarrow \frac{1}{2}2\sqrt{a} \in \mathbb{Q}^+ \Rightarrow \sqrt{a} \in \mathbb{Q}^+ \Rightarrow \sqrt{a} \in \mathbb{Q}$ et $\sqrt{b} \in \mathbb{Q}$

PROF: ATMANI NAJIB

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

