http://www.xriadiat.com/

1er BAC Sciences Expérimentales BIOF 1er BAC Sciences Mathématiques BIOF

PROF: ATMANI NAJIB

Correction Série N°17 : LOGIOUE ET RAISONNEMENTS

Exercice1 : Déterminer, en justifiant la réponse, la valeur de vérité de chacune des propositions suivantes et déterminer leurs négations :

1)
$$P: "\exists x \in \mathbb{R} / x^2 + 3x + 7 = 0"$$

2)
$$Q: \forall x \in \mathbb{R}^-; x^2 = 9 \Rightarrow x = -3 \text{ }$$

3) R: «
$$\sqrt{3} + \sqrt{5} < 2\sqrt{2} \Rightarrow \sqrt{3+5} = \sqrt{3} + \sqrt{5}$$
 »

4) S:
$$\sqrt{3} + \sqrt{5} > 2\sqrt{2}$$
 et $\sqrt{3+5} = \sqrt{3} + \sqrt{5}$ »

5)
$$T: \ll \exists n \in \mathbb{N}; 2n+5 \text{ est pair } \text{"ou"} \ll \exists n \in \mathbb{N}; 2^n > 10 \text{"}$$

6)
$$M: (\forall x \in \mathbb{R}; x^2 + 1 \ge 2x)$$

7)
$$N$$
: « $\forall x \in \mathbb{R}; \exists y \in \mathbb{R}; y < x+1$ »

Solution : 1)
$$P : "\exists x \in \mathbb{R} / x^2 + 3x + 7 = 0"$$

$$x^2+3x+7=0$$
: $\Delta = b^2-4ac = 3^2-4 \times 1 \times 7 = -19$. donc: pas de solution

$$P$$
: " $\exists x \in \mathbb{R} / x^2 + 3x + 7 = 0$ " est fausse

$$\overline{P}$$
: " $\forall x \in \mathbb{R} / x^2 + 3x + 7 \neq 0$ "

2)
$$Q: \forall x \in \mathbb{R}^-; x^2 = 9 \Rightarrow x = -3 \text{ }$$

Soit:
$$a \in \mathbb{R}^-$$
: $x^2 = 9 \Rightarrow x = -\sqrt{9}$ ou $x = \sqrt{9} \Rightarrow x = -3$ ou $x = 3$ et puisque: $x \in \mathbb{R}^-$

Alors:
$$Q: \forall x \in \mathbb{R}^-; x^2 = 9 \Rightarrow x = -3$$
 est vraie

$$\overline{Q}$$
: « $\exists x \in \mathbb{R}^-$; $x^2 = 9$ et $x \neq -3$ »

3) R:
$$\sqrt{3} + \sqrt{5} < 2\sqrt{2} \Rightarrow \sqrt{3+5} = \sqrt{3} + \sqrt{5}$$
 »

$$(\sqrt{3} + \sqrt{5})^2 = (\sqrt{3})^2 + (\sqrt{5})^2 + 2\sqrt{3} \times \sqrt{5} = 8 + 2\sqrt{15}$$
 et $(2\sqrt{2})^2 = 8$ donc : $\sqrt{3} + \sqrt{5} > 2\sqrt{2}$

Donc: "
$$\sqrt{3} + \sqrt{5} < 2\sqrt{2}$$
" est fausse

$$\sqrt{3+5}^2 = \sqrt{8}^2 = 8$$
 et $(\sqrt{3} + \sqrt{5})^2 = 8 + 2\sqrt{15}$ donc: " $\sqrt{3+5} = \sqrt{3} + \sqrt{5}$ " est fausse

Par suite :
$$R$$
: « $\sqrt{3} + \sqrt{5} < 2\sqrt{2} \Rightarrow \sqrt{3+5} = \sqrt{3} + \sqrt{5}$ » est vraie (voir la table de vérité de l'implication)

$$\overline{R}$$
: « $\sqrt{3} + \sqrt{5} < 2\sqrt{2}$ et $\sqrt{3+5} \neq \sqrt{3} + \sqrt{5}$ »

4)
$$S: (\sqrt{3} + \sqrt{5}) > 2\sqrt{2}$$
 et $\sqrt{3+5} = \sqrt{3} + \sqrt{5}$ »

"
$$\sqrt{3} + \sqrt{5} > 2\sqrt{2}$$
" est vraie et " $\sqrt{3+5} = \sqrt{3} + \sqrt{5}$ " est fausse

Par suite :
$$S$$
: « $\sqrt{3} + \sqrt{5} > 2\sqrt{2}$ et $\sqrt{3+5} = \sqrt{3} + \sqrt{5}$ » est fausse

$$\overline{S}$$
: « $\sqrt{3} + \sqrt{5} \le 2\sqrt{2}$ ou $\sqrt{3+5} \ne \sqrt{3} + \sqrt{5}$ »

5)
$$T: \ll \exists n \in \mathbb{N}; 2n+5 \text{ est pair } \text{"ou"} \ll \exists n \in \mathbb{N}; 2^n > 10 \text{"}$$

Soit
$$n \in \mathbb{N}$$
: $2n+5=2n+4+1=2(n+2)+1=2k+1$ est donc: impair

"
$$\exists n \in \mathbb{N}; 2n+5$$
 est pair" est fausse

"
$$\exists n \in \mathbb{N}; 2^n > 10$$
" est vraie car pour : $n = 4; 2^4 = 16 > 10$

Par suite :
$$T$$
: « $\exists n \in \mathbb{N}$; $2n+5$ est pair » ou « $\exists n \in \mathbb{N}$; $2^n > 10$ » est vraie

PROF: ATMANI NAJIB

 \overline{T} : « $\forall n \in \mathbb{N}$; 2n+5 est impair » et « $\forall n \in \mathbb{N}$; $2^n \le 10$ »

6) Soit
$$x \in \mathbb{R}$$
: $x^2 + 1 - 2x = (x - 1)^2 \ge 0$

Donc : M : « $\forall x \in \mathbb{R}$; $x^2 + 1 \ge 2x$ » est vraie

$$\overline{M}$$
: « $\exists x \in \mathbb{R}; x^2 + 1 \prec 2x$ »

7)
$$N: \langle \forall x \in \mathbb{R}; \exists y \in \mathbb{R}; y < x+1 \rangle$$

Soit
$$x \in \mathbb{R}$$
: pour $y = x$ on a: $x < x + 1$ (vraie)

Donc:
$$\forall x \in \mathbb{R}; \exists y = x \in \mathbb{R}; y < x+1$$
 est vraie et \overline{N} : « $\exists x \in \mathbb{R}; \forall y \in \mathbb{R}; y \geq x+1$ »

8)
$$E: \ll 2\sqrt{17} < 69 \implies (\cos \pi = -1 \text{ ou } 2^{20024} - 1 < 123232659) \text{ }$$

$$(\cos \pi = -1 \ ou \ 2^{20024} - 1 \prec 123232659)$$
est vraie car : $\cos \pi = -1$ est vraie

Donc:
$$S: \ll 2\sqrt{17} < 69 \implies (\cos \pi = -1 \text{ ou } 2^{20024} - 1 \prec 123232659)$$
 » est vraie

(voir la table de vérité de l'implication)

$$\overline{E}$$
: « $2\sqrt{17} < 69$ $et(\cos \pi \neq -1 \ et \ 2^{20024} - 1 \geq 123232659)$ »

Exercice2: 1) Résoudre dans
$$\mathbb{R}$$
 l'équation (E): $2x^2+3x-2=0$

2) Déduire la valeur de vérité des propositions suivantes :

$$P: "\exists x \in \mathbb{R} / 2x^2 + 3x - 2 = 0"; Q "\exists n \in \mathbb{N} / 2n^2 + 3n - 2 = 0"$$

3) Donner la négation de la proposition P

Solution : 1) (E):
$$2x^2+3x-2=0$$
: $\Delta = b^2-4ac = 3^2-4 \times 2 \times (-2) = 25$.

Comme $\Delta > 0$, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - \sqrt{25}}{2 \times 2} = -2$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 + \sqrt{25}}{2 \times 2} = \frac{1}{2}$

$$x_1 = -2$$
 et $x_2 = \frac{1}{2}$ donc : $S = \left\{-2; \frac{1}{2}\right\}$

2) a) La proposition :
$$P: "\exists x \in \mathbb{R} / 2x^2 + 3x - 2 = 0"$$
 est vraie car il existe $x = -2 \in \mathbb{R}$

Tel que :
$$2x^2+3x-2=0$$
 ; en effet : $2(-2)^2+3(-2)-2=8-6-2=0$

b) La proposition :
$$Q$$
 " $\exists n \in \mathbb{N} / 2n^2 + 3n - 2 = 0$ " est fausse car les solutions de

l'équation
$$2n^2 + 3n - 2 = 0$$
 sont : $n_1 = -2$ et $n_2 = \frac{1}{2}$ Mais : $n_1 = -2 \notin \mathbb{N}$ et $n_2 = \frac{1}{2} \notin \mathbb{N}$

3)
$$\overline{P}$$
: " $\forall x \in \mathbb{R} / 2x^2 + 3x - 2 \neq 0$ "

Exercice3 : Donner la négation et la valeur de vérité de chacune des propositions suivantes.

1) P:
$$(\exists x \in \mathbb{R})(\forall y \in \mathbb{R}); 2x^2 + xy + 5y^2 \neq 0$$
»

2)
$$Q: (\forall x \in \mathbb{R})(\forall y \in \mathbb{R}); x - y = 2 \Rightarrow x \succ 2$$
»

3)
$$R: \ll (\forall n \in \mathbb{N}^*) / \sqrt{4n^2 + 5n} \notin \mathbb{N} \gg$$

Solution : 1)
$$P: (\exists x \in \mathbb{R})(\forall y \in \mathbb{R}); 3x^2 - xy + 4y^2 \neq 0)$$

Pour :
$$x=1 \in \mathbb{R}$$
 : $2 \times 1^2 + 1y + 5y^2 = 5y^2 + y + 2$

$$\Delta = 1^2 - 40 = -39 < 0$$
 donc: $5y^2 + y + 2 = 0$ n'a pas solution c'est-à-dire: $5y^2 + y + 2 \neq 0$

Alors P: est vraie

$$\overline{P}$$
: $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}); 2x^2 + xy + 5y^2 = 0$ »

2)
$$Q: (\forall x \in \mathbb{R})(\forall y \in \mathbb{R}); x-y=1 \Rightarrow x \succ 1 \text{ w donc}: \overline{Q}: (\exists x \in \mathbb{R})(\exists y \in \mathbb{R})/x-y=2 \text{ et } x \leq 2 \text{ w}$$

Pour:
$$x=1$$
 et $y=-1$ on a: $x-y=1-(-1)=2$ et $1 \le 2$

Alors la proposition \overline{Q} : est vraie et par suite : Q: Fausse

3)
$$R: \ll \left(\forall n \in \mathbb{N}^* \right) / \sqrt{4n^2 + 5n} \notin \mathbb{N} \text{ w donc}: \overline{R}: \ll \left(\exists n \in \mathbb{N}^* \right) / \sqrt{4n^2 + 5n} \in \mathbb{N} \text{ w}$$

Pour:
$$n = 1$$
: $\sqrt{4 \times 1^2 + 5 \times 1} = \sqrt{9} = 3 \in \mathbb{N}$

Alors la proposition \overline{R} : est vraie et par suite : R: Fausse

Exercice4: Soit P; Q et R trois propositions.

Démontrer que les propositions "P et (Q ou R)" et "(P et Q) ou (P et R)" sont équivalentes.

Solution : On va dresser les tables de vérité de ces deux propositions et démontrer que leurs résultats sont identiques. On a d'une part :

P	Q	R	Q ou R	P et $(Q$ ou $R)$
F	F	F	F	F
F	F	V	V	F
F	V	F	V	F
F	V	V	V	F
V	F	F	F	F
V	F	V	V	V
V	V	\overline{F}	V	V
V	V	V	V	V

D'autre part :

P	Q	R	P et Q	P et R	$(P \ et \ Q) \ ou(P \ et \ R)$					
F	F	F	F	F	F					
F	F	V	F	F	F					
F	V	F	F	F	F					
F	V	V	F	F	F					
V	F	F	F	F	F					
V	F	V	F	V	V					
V	V	F	V	F	V					
V	V	V	V	V	V					

La lecture de ces deux tables de vérité nous dit bien que les deux propositions sont équivalentes.

Exercice5 : Démontrer en utilisant le Raisonnement par implications successives que :

$$\forall x \in \mathbb{R} ; \left(2 \le x \le 3 \Rightarrow \frac{1}{3} \le \frac{x}{x^2 - 3} \le 3\right)$$

Solution : Soit : $x \in \mathbb{R}$; Supposons que : $2 \le x \le 3$ et montrons que : $\frac{1}{3} \le \frac{x}{x^2 - 3} \le 3$

$$2 \le x \le 3 \Rightarrow 2^2 \le x^2 \le 3^2 \Rightarrow 4 \le x^2 \le 9 \Rightarrow 4 - 3 \le x^2 - 3 \le 9 - 3 \Rightarrow 1 \le x^2 - 3 \le 6$$

$$\Rightarrow \frac{1}{6} \le \frac{1}{x^2 - 3} \le 1 \text{ et comme} : 2 \le x \le 3 \Rightarrow \frac{1}{6} \times 2 \le x \times \frac{1}{x^2 - 3} \le 1 \times 3 \Rightarrow \frac{1}{3} \le \frac{x}{x^2 - 3} \le 3$$

Donc:
$$\forall x \in \mathbb{R}; \left(2 \le x \le 3 \Rightarrow \frac{1}{3} \le \frac{x}{x^2 - 3} \le 3\right)$$

PROF: ATMANI NAJIB

Exercice6: Ecrire les propositions suivantes en utilisant des symboles logiques convenables:

1)(P)«pour tout entier naturel n, il existe un nombre réel t tel que la racine carrée de n est égale à t »

2) (Q) : « Pour tous nombres réel x et y, il existe un entier naturel p, tel que la somme des carrés de x et de y est égale au cube du nombre p »

3) (R) : « le système formé par les deux équations 3x-2y=5 et x+y=-3 admet un couple unique solution dans \mathbb{R}^2 »

Solution: 1) $P: \langle \langle \forall n \in \mathbb{N}; \exists t \in \mathbb{R}; \sqrt{n} = t \rangle$

2) Q: $\forall x \in \mathbb{R}; \forall x \in \mathbb{R}; \exists p \in \mathbb{N} / x^2 + y^2 = p^3$ »

3)
$$R"\exists!(x,y) \in \mathbb{R}^2 / \begin{cases} 3x - 2y = 5 \\ x + y = -3 \end{cases}$$

Exercice7 : 1) En utilisant un raisonnement par équivalence : Montrer que : $\forall x \in \mathbb{R}_+^*$: $x + \frac{1}{x} \ge 2$

2) En déduire que : $\forall x \in \mathbb{R}_+^*$: $x^6 \ge 2x^3 - 2$

Solution :1) Soit : $x \in \mathbb{R}_{+}^{*}$

$$x + \frac{1}{x} \ge 2 \Leftrightarrow \frac{x^2 + 1}{x} \ge 2 \Leftrightarrow x^2 + 1 \ge 2x \Leftrightarrow x^2 - 2x + 1 \ge \Leftrightarrow (x - 1)^2 \ge 0$$
 Proposition vraie

Donc: $\forall x \in \mathbb{R}^*_+$: $x + \frac{1}{x} \ge 2$ est aussi une Proposition vraie

2) Soit :
$$x \in \mathbb{R}_{+}^{*}$$
: On a : $\forall x \in \mathbb{R}_{+}^{*}$: $x + \frac{1}{x} \ge 2$ donc : puisque : $x^{3} \in \mathbb{R}_{+}^{*}$ alors : $x^{3} + \frac{1}{x^{3}} \ge 2$

Donc:
$$\frac{(x^3)^2 + 1}{x^3} \ge 2$$
 c'est-à-dire: $x^6 + 1 \ge 2x^3$

Donc:
$$x^6 \ge 2x^3 - 1$$
 or: $2x^3 - 1 \ge 2x^3 - 2$

Par suite :
$$\forall x \in \mathbb{R}_+^* \ x^6 \ge 2x^3 - 2$$

Exercice8: Démontrer en utilisant la contraposée que : $\forall x \in \mathbb{R}$; $(x + x^3 \le 2 \implies x \le 1)$

Solution : Démontrons en utilisant la contraposée que la proposition suivante est vraie :

$$\forall x \in \mathbb{R}; (x+x^3 \le 2 \implies x \le 1)$$

Soit : $x \in \mathbb{R}$; Par contraposée Montrons que : $(x \succ 1 \Rightarrow x + x^3 \succ 2)$

Supposons que : x > 1 alors : $x^3 > 1^3$ c'est-à-dire :

$$x \succ 1$$
 et $x^3 \succ 1 \Rightarrow x + x^3 \succ 1 + 1 \Rightarrow x + x^3 \succ 2$

Donc:
$$(x \succ 1 \Rightarrow x + x^3 \succ 2)$$

Par contraposée on a donc : $\forall x \in \mathbb{R} : (x + x^3 \le 2 \implies x \le 1)$

Exercice9 : En utilisant un raisonnement par disjonction des cas (ou une récurrence)

Montrer que : $\forall n \in \mathbb{N} : n^2 + n + 1$

Solution : Raisonnement par disjonction des cas

Soit: $n \in \mathbb{N}$.

Premier cas : si
$$n$$
 est pair : $\exists k \in \mathbb{N} : n = 2k$

$$n^2 + n + 1 = (2k)^2 + 2k + 1 = 4k^2 + 2k + 1 = 2(2k^2 + k) + 1 = 2k' + 1$$
 avec $k' = 2k^2 + k \in \mathbb{N}$

Donc: $n^2 + n + 1$ est un nombre impair.

<u>2 iem cas :</u> si *n* est impair : $\exists k \in \mathbb{N} : n = 2k + 1$

$$n^2 + n + 1 = (2k + 1)^2 + 2k + 1 + 1 = 4k^2 + 4k + 1 + 2k + 1 + 1 = 2(2k^2 + 3k + 1) + 1 = 2k' + 1$$
 avec

$$k' = 2k^2 + 3k + 1 \in \mathbb{N}$$

Donc: $n^2 + n + 1$ est un nombre impair.

Par suite : d'après le principe par disjonction des cas :

$$\forall n \in \mathbb{N} : n^2 + n + 1$$
 est un nombre impair.

Exercice10: Résoudre dans
$$\mathbb{R}$$
 l'inéquation (1): $x^2 - |x-2| - 4 = 0$

Solution:
$$(E): x^2 - |x-2| - 4 = 0$$
: Etudions le signe de : $x-2$

ì	` '					
	x	$-\infty$	2	$+\infty$		
	x-2	_	Q	+		

Si
$$x \ge 2$$
 alors $x - 2 \ge 0$ donc : $|x - 2| = x - 2$

Donc: l'équation devient:
$$x^2 - (x-2) - 4 = 0$$

Signifie:
$$x^2 - x + 2 - 4 = 0$$
 C'est-à-dire: $x^2 - x - 2 = 0$

Donc:
$$\Delta = b^2 - 4ac = (-1)^2 - 4 \times 1 \times (-2) = 9$$
.

Comme
$$\Delta > 0$$
, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - \sqrt{9}}{2 \times 1} = -1$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + \sqrt{9}}{2 \times 1} = 2$

$$\mathsf{Mais}: \ x_{\scriptscriptstyle 1} = -1 \not\in \big\lceil 2; +\infty \big\lceil \quad \mathsf{donc}: S_{\scriptscriptstyle 1} = \big\{ 2 \big\}$$

Si
$$x < 2$$
 alors $: x - 2 \le 0$ donc $: |x - 2| = -(x - 2) = -x + 2$

Donc : l'équation devient :
$$x^2 + (x-2) - 4 = 0$$
 c'est à dire : $x^2 + x - 2 - 4 = 0$

Signifie:
$$x^2 + x - 6 = 0$$
: donc: $\Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times (-6) = 25$.

Comme
$$\Delta$$
 > 0, l'équation possède deux solutions distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{25}}{2 \times 1} = -3$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{25}}{2 \times 1} = 2$

Mais:
$$x_2 = 2 \notin]-\infty; 2[$$
 donc: $S_2 = \{-3\}$

Par suite :
$$S = S_1 \cup S_2 = \{-3, 2\}$$
.

Montrer par l'absurde que :
$$x \le \sqrt{2}$$
 ou $\frac{1}{v} \le \sqrt{2}$ ou $y + \frac{1}{x} \le \sqrt{2}$

Solution: Soient:
$$x \in \mathbb{R}^*$$
 et $y \in \mathbb{R}^*$

Supposons par l'absurde que :
$$x > \sqrt{2}$$
 et $\frac{1}{y} > \sqrt{2}$ et $y + \frac{1}{x} > \sqrt{2}$

$$x > \sqrt{2} \Rightarrow \frac{1}{x} < \frac{1}{\sqrt{2}}$$
 et $\frac{1}{y} > \sqrt{2} \Rightarrow y < \frac{1}{\sqrt{2}}$

la somme 1 et 2 membre a membre donne :
$$y + \frac{1}{x} < \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

Donc:
$$y + \frac{1}{x} < \sqrt{2}$$
 contradiction avec: $y + \frac{1}{x} > \sqrt{2}$

Donc:
$$x \le \sqrt{2} \ ou \ \frac{1}{y} \le \sqrt{2} \ ou \ y + \frac{1}{x} \le \sqrt{2}$$

Exercice12: On considère la proposition suivante : $P: (\forall x \in \mathbb{R}): x < 6 \Rightarrow x^2 < 36$

- 1) Ecrire la négation de P
- 2) En utilisant un raisonnement par contre-exemple, Montrer que P est fausse.

Solution:1) On a : $P: (\forall x \in \mathbb{R}): x < 6 \Rightarrow x^2 < 36 \text{ alors}: \overline{P}; (\exists x \in \mathbb{R}): x < 6 \text{ et } x^2 \ge 36$

Car: $\overline{P_1 \Rightarrow P_2} \Leftrightarrow P_1 \text{ et } \overline{P_2}$

2) On a : \overline{P} est vraie car $(\exists -7 \in \mathbb{R}): -7 < 6$ et $(-7)^2 = 49 \ge 36$

Par suite : *P* est une proposition fausse. (-7 est le contre-exemple)

Exercice13: Soient $a; b \in \mathbb{Q}$

- 1) Montrer que : $a+b\sqrt{2}=0 \Rightarrow a=b=0$
- 2) En déduire que : $a+b\sqrt{2}=a'+b'\sqrt{2} \Rightarrow a=a'$ et b=b'

Remarque : $\sqrt{2} \notin \mathbb{O}$

Solution : 1) ® Méthode : Soit P une proposition mathématique. Pour montrer que P est vraie, on peut supposer que *P* est fausse et obtenir une absurdité.

Nous raisonnons par l'absurde en supposant que $b \neq 0$

$$a + b\sqrt{2} = 0 \Rightarrow b\sqrt{2} = -a \Rightarrow -\frac{a}{b} = \sqrt{2}$$

Or $a;b\in\mathbb{Q}$ donc $-\frac{a}{b}\in\mathbb{Q}$ mais on sait que $\sqrt{2}\notin\mathbb{Q}$ Nous obtenons donc une contradiction

Donc b=0 et puisque : $a+b\sqrt{2}=0$ alors a=0

2) supposons que : $a + b\sqrt{2} = a' + b'\sqrt{2}$ donc $a - a' + b\sqrt{2} - b'\sqrt{2} = 0$

Donc $a - a' + \sqrt{2}(b - b') = 0$ et d'après 1) on aura : a - a' = 0 et b - b' = 0

Donc a = a' et b = b'

Exercice14: 1) Montrer que si : 2n+1 est un carré parfait alors $(n+1)^2$ est la somme de deux carrés parfaits.

2)Montrer que si : n+1 est un carré parfait alors 14n+14 est la somme de trois carrés parfaits. **Solution**: 1) Soit $n \in \mathbb{N}$

Supposons que si : 2n+1 est un carré parfait alors il existe $m \in \mathbb{N}$ tel que : $2n+1=m^2$

$$(n+1)^2 = n^2 + (2n+1) = n^2 + m^2$$

alors $(n+1)^2$ est la somme de deux carrés parfaits.

2) Supposons que si : n+1 est un carré parfait alors il existe $m \in \mathbb{N}$ tel que : $n+1=m^2$

 $14n+14=14(n+1)=14m^2=m^2+9m^2+4m^2=m^2+(3m)^2+(2m)^2$

alors 14n+14 est la somme de trois carrés parfaits.

Exercice15: Montrer par récurrence que : $\forall n \in \mathbb{N}$; $10^{3n+2} + 10^{3n+1} + 1$ est un multiple de 111

Solution : 1étapes : l'initialisation : Pour n=0 nous avons : $10^{3\times0+2}+10^{3\times0+1}+1=100+10+1=111$ et 111est un multiple de 111

Donc P (0) est vraie.

L'hérédité : 2étapes : soit : $n \in \mathbb{N}$

Supposons que P(n) soit vraie C'est-à-dire : $\exists k \in \mathbb{N} / 10^{3n+2} + 10^{3n+1} + 1 = 111k$

Donc: $\exists k \in \mathbb{N} / 10^{3n+2} = 111k - 10^{3n+1} - 1$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que : $\exists k' \in \mathbb{N} / 10^{3n+5} + 10^{3n+4} + 1 = 111k'$??

 $10^{3n+5} + 10^{3n+4} + 1 = 10^{3n+2} \times 10^{3} + 10^{3n+1} \times 10^{3} + 1 = (111k - 10^{3n+1} - 1) \times 10^{3} + 10^{3n+1} \times 10^{3} + 1$

PROF: ATMANI NAJIB

 $= 111k \times 10^{3} - 10^{3n+1} \times 1000 - 1000 + 10^{3n+1} \times 1000 + 1 = 111k \times 10^{3} - 1000 + 1$

$$=111k\times10^3-999=111(k\times10^3-9)=111k'$$
 avec $k'=k\times10^3-9\in\mathbb{N}$

Donc P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a : $\forall n \in \mathbb{N}$; $10^{3n+2} + 10^{3n+1} + 1$ est un multiple de 111

Exercice16: 1) On pose:
$$\forall n \in \mathbb{N}^*$$
: $S_n = 1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = \sum_{k=0}^{k=n-1} (2k+1)^2$

1) Calculer : S_1 ; S_2 et S_3

2)Montrer par récurrence que :
$$\forall n \in \mathbb{N}^*$$
 ; $S_n = \sum_{k=0}^{k=n-1} \left(2k+1\right)^2 = \frac{n\left(4n^2-1\right)}{3}$.

Solution : 1)
$$S_1 = 1^2 = \sum_{k=0}^{k=0} (2k+1)^2 = 1$$
 et $S_2 = 1^2 + 3^2 = \sum_{k=0}^{k=1} (2k+1)^2 = 1 + 9 = 10$

$$S_3 = 1^2 + 3^2 + 5^2 = \sum_{k=0}^{k=2} (2k+1)^2 = 1 + 9 + 25 = 35$$

2)Notons P(n) la proposition : "
$$S_n = \frac{n(4n^2 - 1)}{3}$$
"

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

1étapes : l'initialisation : Pour n=1 nous avons :
$$S_1 = 1$$
 et $\frac{1(4 \times 1^2 - 1)}{3} = \frac{3}{3} = 1$ donc P(1) est vraie.

L'hérédité : 2étapes : soit $n \in \mathbb{N}^*$

Supposons que P(n) soit vraie c'est-à-dire :
$$S_n = \sum_{k=0}^{k=n-1} (2k+1)^2 = \frac{n(4n^2-1)}{3}$$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que :
$$S_{n+1} = \sum_{k=0}^{k=n} (2k+1)^2 = \frac{(n+1)(4(n+1)^2-1)}{3} = \frac{(n+1)(4n^2+8n+3)}{3}$$
 ??

C'est-à-dire montrons que :
$$S_{n+1} = \frac{4n^3 + 8n^2 + 3n + 4n^2 + 8n + 3}{3} = \frac{4n^3 + 12n^2 + 11n + 3}{3}$$
??

On a:
$$S_{n+1} = \sum_{k=0}^{k=n} (2k+1)^2 = \sum_{k=0}^{k=n-1} (2k+1)^2 + (2n+1)^2$$

Or d'après l'hypothèse de récurrence :
$$S_n = \sum_{k=0}^{k=n-1} (2k+1)^2 = \frac{n(4n^2-1)}{3}$$

Donc:
$$S_{n+1} = \frac{n(4n^2 - 1)}{3} + (2n + 1)^2 = \frac{4n^3 - n + 3(2n + 1)^2}{3} = \frac{4n^3 - n + 3(4n^2 + 4n + 1)}{3}$$

Donc:
$$S_{n+1} = \frac{4n^3 - n + 12n^2 + 12n + 3}{3} = \frac{4n^3 + 12n^2 + 11n + 3}{3}$$

C'est-à-dire : P(n+1) est vraie.

Conclusion : Par le principe de récurrence on a :
$$\forall n \in \mathbb{N}^*$$
 ; $S_n = \sum_{k=0}^{k=n-1} \left(2k+1\right)^2 = \frac{n\left(4n^2-1\right)}{3}$.

PROF: ATMANI NAJIB

<u>7</u>

Exercice17: Montrer que Pour tout entier naturel non nul n,

 n^2-1 est divisible par 8 si et seulement si n est impair.

Solution : Nous procédons par double implication

Montrons d'abord, que si n est impair, alors n^2-1 est divisible par 8 .

En effet, si n est un entier naturel impair, alors :

 $\exists k \in \mathbb{N} \text{ tel que} : n = 2k + 1 \text{ et on aura alors}:$

 $n^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4k(k+1)$ or comme le produit de deux entiers naturels

Consécutifs est pair, il existe un entier naturel m tel que : k(k+1) = 2m

On aura donc $n^2 - 1 = 8m$ avec m entier naturel. C'est-a-dire, $n^2 - 1$ est divisible par 8.

Montrons maintenant l'implication inverse, c'est-à-dire si n^2-1 est divisible par 8 alors n est impair Raisonnons par I 'absurde et supposons que : n^2-1 est divisible par 8 et que n est pair

Signifie: $\exists k \in \mathbb{N}$ tel que: n = 2k

Donc: $n^2 - 1 = n^2 - 1^2 = (n+1)(n-1) = (2k+1)(2k-1)$ est un nombre impair, car produit des deux nombres impairs 2k+1 et 2k-1

Ceci est contradictoire avec Hypothèse que n^2 –1 est divisible par 8 D'où n est impaire.

PROF: ATMANI NAJIB

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

PROF: ATMANI NAJIB