http://www.xriadiat.com/

1er BAC Sciences Expérimentales BIOF 1er BAC Sciences Mathématiques BIOF

PROF: ATMANI NAJIB

Correction Série N°11 : *LOGIQUE ET RAISONNEMENTS*

Exercice1: Parmi les assertions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi?

- 1) Si Marrakech et en France alors 3 2 = 2;
- 2) Soit Marrakech et en France, soit les grenouilles aboient ;
- 3) Soit les roses sont des animaux, soit les chiens ont 4 pattes ;
- 4) Si l'homme est un quadrupède, alors il parle ;
- 5) Les roses ne sont ni des animaux, ni des fleurs ;
- 6. Marrakech est au Maroc ou Madrid est en chine.

Solution: 1) Il s'agit, ici d'une implication.

- « Marrakech et en France » est faux et « 3–2 = 2 » est faux, or la seule possibilité pour qu'une implication soit fausse est qu'une assertion vraie implique une assertion fausse, donc l'assertion 1 est vraie.
- 2) Une phrase, en français, du genre « soit..., soit... » se traduit mathématiquement par « ... ou...
- » « Marrakech et en France » est faux et « les grenouilles aboient » est faux donc l'assertion 2 est fausse.
- 3) « Les roses sont des animaux » est faux et « les chiens ont 4 pattes » est vrai, donc l'assertion 3 est vraie.
- 4) « L'homme est un quadrupède » est faux et « il parle » est vrai, donc l'assertion 4 est vraie.
- 5) « Les roses ne sont ni des animaux, ni des fleurs » peut se traduire par « les roses ne sont pas des animaux et les roses ne sont pas des fleurs ». « Les roses ne sont pas des animaux » est vrai et « les roses ne sont pas des fleurs » est faux donc « les roses ne sont ni des animaux, ni des fleurs », donc l'assertion 5 est fausse.
- 6) « Marrakech est au Maroc » est vrai et « Madrid est en chine » est faux, donc « Marrakech est au Maroc ou Madrid est en chine » est vraie.

Exercice2: Ecrire chacune des propositions suivantes en utilisant les symboles logiques et les quantificateurs

- 1) « l'équation $3x^2-2x-5=0$ admet une solution unique dans l'ensemble $\mathbb N$ »
- 2) « l'inéquation $x^2-3x-11 \le 0$ n'admet pas de solution dans l'ensemble \mathbb{R} »
- 3) « si un entier naturel est un multiple de 12 alors il est divisible par 3 »
- 4) « un entier naturel est pair si et seulement c'est un multiple de 2»

Solution :1) $(\exists ! x \in \mathbb{N}) / 3x^2 - 2x - 5 = 0$

- **2)** $(\forall x \in \mathbb{R}) / x^2 3x 11 > 0$
- 3) $(\forall n \in \mathbb{N})/(\exists k \in \mathbb{N}) n = 12k \Rightarrow (\exists k' \in \mathbb{N}) n = 3k'$
- **4)** $(\forall n \in \mathbb{N}) / n est pair \Leftrightarrow (\exists k \in \mathbb{N}) n = 2k$

Exercice3: Nier les assertions suivantes:

- 1) Tout triangle rectangle possède un angle droit.
- 2) Dans toutes les écuries, tous les chevaux sont noirs.

3)
$$(\forall \varepsilon \succ 0); (\exists \alpha \succ 0) : \left| x - \frac{5}{7} \right| \prec \alpha \Rightarrow |5x - 7| \prec \varepsilon$$

Solution:1) Il existe un triangle rectangle qui ne possède pas un angle droit.

2) Il existe au moins une écurie ou il Ya un cheval non noir.

3)
$$(\exists \varepsilon \succ 0); (\forall \alpha \succ 0): \left| x - \frac{5}{7} \right| \prec \alpha \ et \ |5x - 7| \ge \varepsilon$$

Exercice4: On considère les propositions suivantes $P: "(\forall x \in]0; +\infty[): x^2 \ge x$ "

PROF: ATMANI NAJIB

$$Q:"(\forall a \in [0;+\infty[):\frac{2a}{1+\sqrt{a}} \prec 1" \text{ et } R:"P \Rightarrow Q"$$

1) Donner :
$$\overline{P}$$
 ; \overline{Q} et \overline{R}

2) Montrer que
$$P$$
 est fausse

3) Déterminer la valeur de vérité de :
$$Q$$

Solution :1)
$$\overline{P}$$
 :" $(\exists x \in]0; +\infty[): x^2 \prec x$ "

$$\overline{Q}$$
:" $(\exists a \in [0; +\infty[): \frac{2a}{1+\sqrt{a}} \ge 1]$ " et \overline{R} :" $P \ et \overline{Q}$ "

$$\overline{R}$$
 :" $(\forall x \in]0; +\infty[): x^2 \ge x \ et(\exists a \in [0; +\infty[): \frac{2a}{1+\sqrt{a}} \ge 1"$

2) Montrons que P est fausse

$$\overline{P}: "(\exists x \in]0; +\infty[): x^2 \prec x" \text{ est vraie car } : "(\exists x = \frac{1}{2} \in]0; +\infty[): (\frac{1}{2})^2 = \frac{1}{4} \prec \frac{1}{2}"$$

Donc :
$$\overline{P}$$
 :est vraie et par suite : P est une proposition fausse

On a :
$$\overline{Q}$$
 : " $(\exists a \in [0; +\infty[)) : \frac{2a}{1+\sqrt{a}} \ge 1$ " est vraie car : " $(\exists a = 1 \in [0; +\infty[)) : \frac{2\times 1}{1+\sqrt{1}} = 1 \ge 1$ "

Par suite :
$$Q$$
 est une proposition fausse

On a :
$$R:"P \Rightarrow Q"$$
 avec : P est une proposition fausse et Q est une proposition fausse

Exercice5: A l'aide de la méthode des tables de vérité, dites si la formules "P ou \overline{P} " est une tautologie.

Solution:

P	\overline{P}	$Pou\overline{P}$
F	V	V
V	F	V

[&]quot; $P ou \overline{P}$ " est une tautologie car toujours Vraie

Exercice6: 1) a) Vérifier que pour tout
$$x \in \mathbb{R} - \{1\}$$
 on a : $\frac{1}{1-x} = 1 + x + \frac{x^2}{1-x}$

b) En déduire que :
$$\forall x \in \mathbb{R} - \{1\}$$
; $|x| \le \frac{1}{2} \Rightarrow \left| \frac{1}{1-x} - (1+x) \right| \le 2x^2$

Solution: 1) a) Soit:
$$x \in \mathbb{R} - \{1\}$$
; $1 + x + \frac{x^2}{1 - x} = \frac{(1 + x)(1 - x) + x^2}{1 - x} = \frac{1^2 - x^2 + x^2}{1 - x} = \frac{1}{1 - x}$

b) Soit :
$$x \in \mathbb{R} - \{1\}$$
 tel que : $|x| \le \frac{1}{2}$

On a:
$$\frac{1}{1-x} = 1 + x + \frac{x^2}{1-x}$$
 donc: $\frac{1}{1-x} - (1+x) = \frac{x^2}{1-x}$

Donc:
$$\left| \frac{1}{1-x} - (1+x) \right| = \left| \frac{x^2}{1-x} \right|$$

C'est-à-dire :
$$\left| \frac{1}{1-x} - (1+x) \right| = \frac{x^2}{|1-x|} (1) \text{ Car : } x^2 \ge 0$$

On a:
$$|x| \le \frac{1}{2}$$
 donc: $-\frac{1}{2} \le x \le \frac{1}{2}$ c'est-à-dire: $-\frac{1}{2} \le -x \le \frac{1}{2}$

Donc:
$$1 - \frac{1}{2} \le 1 - x \le 1 + \frac{1}{2}$$
 c'est-à-dire $\frac{1}{2} \le 1 - x \le \frac{3}{2}$ et par suite : $\frac{2}{3} \le \frac{1}{1 - x} \le 2$ donc :

$$-2 \le \frac{2}{3} \le \frac{1}{1-x} \le 2$$

Par suite :
$$\frac{1}{|1-x|} \le 2$$
 et puisque : $x^2 \ge 0$ alors : $\frac{x^2}{|1-x|} \le 2x^2$ et d'après l'égalité (1)

On a donc :
$$\left| \frac{1}{1-x} - (1+x) \right| \le 2x^2$$

Exercice7: Montrer que :
$$(\forall (a;b) \in \mathbb{R}^2)$$
: $a^2 + b^2 = 1 \Rightarrow |a+b| \le \sqrt{2}$

Solution: 1) Supposons que :
$$a^2+b^2=1$$

Or on sait que
$$\forall (a;b) \in \mathbb{R} : (a-b)^2 \ge 0$$

Donc:
$$a^2-2ab+b^2 \ge 0$$
 et puisque: $a^2+b^2=1$ alors:

$$1-2ab \ge 0$$
 Donc $2ab \le 1$ et $a^2+b^2=1$

Par suite :
$$a^2 + b^2 + 2ab \le 2$$
 donc $(a+b)^2 \le 2$

Donc
$$\sqrt{(a+b)^2} \le \sqrt{2}$$
 alors : $|a+b| \le \sqrt{2}$

Exercice8: Montrer que si
$$a \in \mathbb{Q}$$
 et $b \in \mathbb{Q}$ alors $a + b \in \mathbb{Q}$

Solution : Prenons
$$a \in \mathbb{Q}$$
 et $b \in \mathbb{Q}$.

Rappelons que les rationnels
$$\mathbb Q$$
 sont l'ensemble des réels s'écrivant $\frac{p}{q}$ avec $p \in \mathbb Z$ et $q \in \mathbb N^*$.

Alors
$$a = \frac{p}{q}$$
 avec $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$;

De même
$$b = \frac{p'}{q'}$$
 avec $p' \in \mathbb{Z}$ et $q' \in \mathbb{N}^*$

Donc :
$$a+b=\frac{p}{q}+\frac{p'}{q'}=\frac{p\times q'+q\times p'}{q\times q'}$$
. Or le numérateur $p\times q'+q\times p'$ est bien un élément de $\mathbb Z$ le

dénominateur
$$q \times q'$$
 est lui un élément de \mathbb{N}^* .

Donc
$$a+b$$
 s'écrit bien de la forme $a+b=\frac{p''}{q''}$ avec $p''\in\mathbb{Z}$ et $q''\in\mathbb{N}^*$ Ainsi $a+b\in\mathbb{Q}$

Exercice9: Montrer que :
$$\forall (a;b;c) \in \mathbb{R}^3$$
; $a^2 + b^2 + c^2 \ge a \times b + a \times c + b \times c$

Solution : Nous raisonnons par équivalence : Soit :
$$(a;b;c) \in \mathbb{R}^3$$

$$a^2 + b^2 + c^2 \ge a \times b + a \times c + b \times c \iff 2(a^2 + b^2 + c^2) \ge 2(a \times b + a \times c + b \times c)$$

$$\Leftrightarrow 2a^2 + 2b^2 + 2c^2 - 2a \times b - 2a \times c - 2b \times c \ge 0$$

$$\Leftrightarrow (a^2 - 2a \times b + b^2) + (a^2 - 2a \times c + c^2) + (b^2 - 2b \times c + c^2) \ge 0$$

$$\Leftrightarrow (a-b)^2 + (a-c)^2 + (b-c)^2 \ge 0$$
; (vraie)

Donc:
$$\forall (a;b;c) \in \mathbb{R}^3$$
; $a^2+b^2+c^2 \ge a \times b + a \times c + b \times c$

Exercice10: Montrer que :
$$(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$$
; $x^2 + xy + y^2 + 1 \succ 0$

2) Déduire que :
$$(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$$
 : $x \neq y \Rightarrow x^3 + x \neq y^3 + y$

Solution : 1) soit
$$y \in \mathbb{R}$$
 (on le fixe)

L'équation :
$$x^2 + xy + y^2 + 1 > 0$$
 devient une équation dont la variable est x

$$\Delta = y^2 - 4 \times 1 \times (y^2 + 1) = y^2 - 4y^2 + -4 = -3y^2 - 4 = -(3y^2 + 4) < 0$$

le signe de : $x^2 + xy + y^2 + 1$ est celui de a = 1

Donc: $x^2 + xy + y^2 + 1 > 0$

par suite : $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) x^2 + xy + y^2 + 1 \succ 0$

2) Déduction que : $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$: $x \neq y \Rightarrow x^3 + x \neq y^3 + y$

Utilisons un Raisonnement par contraposition :

L'assertion : $x \neq y \Rightarrow x^3 + x \neq y^3 + y$ est équivalente à : $x^3 + x = y^3 + y \Rightarrow x = y$

Montrer que : $x^3 + x = y^3 + y \Rightarrow x = y$

Soit: $(x; y) \in \mathbb{R}^2$: Supposons que: $x^3 + x = y^3 + y$

Donc: $x^3 - y^3 + x - y = 0 \Rightarrow (x - y)(x^2 + xy + y^2) + (x - y) = 0 \Rightarrow (x - y)(x^2 + xy + y^2 + 1) = 0$

 $\Rightarrow x - y = 0 \quad ou \quad x^2 + xy + y^2 + 1 = 0$

Comme : $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$; $x^2 + xy + y^2 + 1 \succ 0$ alors $x^2 + xy + y^2 + 1 \neq 0$

 $\Rightarrow x - y = 0 \Rightarrow x = y$

Par contraposition ceci équivalent à : $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$: $x \neq y \Rightarrow x^3 + x \neq y^3 + y$

Exercice11: 1) Montrer que : $\forall x \in \mathbb{R}^*$; $x + \frac{1}{x} \ge 2$

2) Déduire que : $\forall (a;b;c;d) \in (\mathbb{R}^{+*})^4 : \frac{a}{b} + \frac{a}{c} + \frac{b}{c} + \frac{b}{a} + \frac{c}{a} + \frac{c}{b} \ge 6$

3) Montrer que : $\forall (a;b;c) \in (\mathbb{R}^{+*})^3 : (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$

4) Soit $(a;b;c) \in (\mathbb{R}^{+*})^3$: on pose: $x = a + \frac{1}{b}$; $y = b + \frac{1}{c}$ et $z = c + \frac{1}{a}$

Montrer que : $x \ge 2$ ou $y \ge 2$ ou $z \ge 2$

Solution: 1) Nous raisonnons par équivalence

Soit: $x \in \mathbb{R}^*$: $x + \frac{1}{x} \ge 2 \Leftrightarrow \frac{x^2 + 1}{x} \ge 2 \Leftrightarrow x^2 + 1 \ge 2x$

 $\Leftrightarrow x^2 + 1 - 2x \ge 0 \Leftrightarrow (x - 1)^2 \ge 0$; (vraie)

Donc: $\forall x \in \mathbb{R}^*$; $x + \frac{1}{x} \ge 2$

2) Déduction : Soit : $(a;b;c;d) \in (\mathbb{R}^{+*})^4$: On a : $\forall x \in \mathbb{R}^*$; $x + \frac{1}{x} \ge 2$

Donc: $\frac{a}{b} + \frac{1}{\frac{a}{b}} \ge 2$ c'est à dire : $\frac{a}{b} + \frac{b}{a} \ge 2$ 1

De même on a aussi : $\frac{a}{c} + \frac{c}{a} \ge 2$ 2 et de même on a aussi : $\frac{b}{c} + \frac{c}{b} \ge 2$ 3

1 + 2 + 3 membre a membre donne : $\frac{a}{b} + \frac{a}{c} + \frac{b}{c} + \frac{b}{a} + \frac{c}{a} + \frac{c}{b} \ge 6$ (Vraie)

3) Montrons que : $\forall (a;b;c) \in (\mathbb{R}^{+*})^3 : (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$

Nous raisonnons par équivalence

Soit: $(a;b;c;d) \in (\mathbb{R}^{+*})^4$: $(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9 \Leftrightarrow 1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1 \ge 9$

PROF: ATMANI NAJIB

<u>4</u>

 $\Leftrightarrow \frac{a}{b} + \frac{a}{c} + \frac{b}{a} + \frac{b}{c} + \frac{c}{a} + \frac{c}{b} \ge 6 \text{ (Vraie)}$

Donc: $\forall (a;b;c;d) \in (\mathbb{R}^{+*})^4 : (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}) \ge 9$

4) Soit $(a;b;c) \in (\mathbb{R}^{+*})^3$ Montrons que : $x \ge 2$ ou $y \ge 2$ ou $z \ge 2$

Nous raisonnons par l'absurde en supposant que : $x \prec 2$ ou $y \prec 2$ ou $z \prec 2$

$$\begin{cases} x \prec 2 \ (1) & \text{(1)+(2)+(3)} \\ y \prec 2 \ (2) & \Rightarrow & x+y+z \prec 8 \Rightarrow \left(a+\frac{1}{b}\right) + \left(b+\frac{1}{c}\right) + \left(c+\frac{1}{a}\right) \prec 8 \Rightarrow \left(a+\frac{1}{a}\right) + \left(b+\frac{1}{b}\right) + \left(c+\frac{1}{c}\right) \prec 8 \\ z \prec 2 \ (3) & \end{cases}$$

Or on a :
$$\begin{cases} a + \frac{1}{a} \ge 2 & (1) \\ b + \frac{1}{b} \ge 2 & (2) \end{cases} \Rightarrow \left(a + \frac{1}{a}\right) + \left(b + \frac{1}{b}\right) + \left(c + \frac{1}{c}\right) \ge 8 \text{ contradiction avec}$$
$$c + \frac{1}{c} \ge 2 \quad (3)$$

Donc: $x \ge 2$ ou $y \ge 2$ ou $z \ge 2$

Exercice12 : Soit $n \in \mathbb{N}$ et $p \in \mathbb{N}$: Montrer que $n \times p$ est pair ou $n^2 - p^2$ est un multiple de 8 . Solution :

- Si n ou p sont pairs alors $n \times p$ est pair
- Si n ou p sont impairs alors

$$n=2k+1$$
 et $p=2k'+1$ avec $k \in \mathbb{N}; k' \in \mathbb{N}$

Donc
$$n^2 - p^2 = (2k+1)^2 - (2k'+1)^2$$

$$n^2 - p^2 = 4(k(k+1) - k'(k'+1))$$
 et on a : $m(m+1)$ est pair

$$n^2 - p^2 = 4(2\alpha - 2\beta) = 8(\alpha - \beta) = 8k''$$

Donc: $n^2 - p^2$ est un multiple de 8 .

Exercice13: Soient $a; b \in \mathbb{O}$

- 1) Montrer que : $a+b\sqrt{2}=0 \Rightarrow a=b=0$
- 2) En déduire que : $a+b\sqrt{2}=a'+b'\sqrt{2} \Rightarrow a=a'$ et b=b'

Remarque : $\sqrt{2} \notin \mathbb{Q}$

Solution :1) ® Méthode : Soit P une proposition mathématique. Pour montrer que P est vraie, on peut supposer que P est fausse et obtenir une absurdité.

Nous raisonnons par l'absurde en supposant que $b \neq 0$

$$a + b\sqrt{2} = 0 \Rightarrow b\sqrt{2} = -a \Rightarrow -\frac{a}{b} = \sqrt{2}$$

Or $a;b\in\mathbb{Q}$ donc $-\frac{a}{b}\in\mathbb{Q}$ mais on sait que $\sqrt{2}\notin\mathbb{Q}$ Nous obtenons donc une contradiction

Donc b=0 et puisque : $a+b\sqrt{2}=0$ alors a=0

2) supposons que : $a + b\sqrt{2} = a' + b'\sqrt{2}$ donc $a - a' + b\sqrt{2} - b'\sqrt{2} = 0$

Donc $a - a' + \sqrt{2}(b - b') = 0$ et d'après 1) on aura : a - a' = 0 et b - b' = 0

Donc a = a' et b = b'

Exercice14: 1) Montrer que : $\forall n \in \mathbb{N}$; L'ensemble des restes de la division euclidienne de n^2 Par 5 est : $E = \{0;1;4\}$

PROF: ATMANI NAJIB

<u>5</u>

2) En déduire que : $\forall k \in \mathbb{N}$; $\sqrt{5k+12} \notin \mathbb{N}$

Solution : 1) Soit $n \in \mathbb{N}$: On a : 5 cas possibles seulement pour n n = 5k ou n = 5k + 1 ou n = 5k + 2 ou n = 5k + 3 ou n = 5k + 4 avec $k \in \mathbb{N}$

<u>1^{ére}cas</u>: n = 5k alors $n^2 = (5k)^2 = 25k^2 = 5 \times (5k^2) = 5k' = 5k' + 0$

Donc : 0 est le reste de la division euclidienne de n^2 Par 5

2^{ére}cas:
$$n = 5k + 1$$
 alors $n^2 = (5k + 1)^2 = 25k^2 + 10k + 1 = 5 \times (5k^2 + 2k) + 1 = 5k' + 1$

Donc : 1 est le reste de la division euclidienne de
$$n^2$$
 Par 5

3^{ére}cas:
$$n = 5k + 2$$
 alors $n^2 = (5k + 2)^2 = 25k^2 + 20k + 4 = 5 \times (5k^2 + 4k) + 4 = 5k' + 4$

Donc : 4 est le reste de la division euclidienne de
$$n^2$$
 Par 5

4^{ére}cas:
$$n = 5k + 3$$
 alors $n^2 = (5k + 3)^2 = 25k^2 + 30k + 9 = (25k^2 + 30k + 5) + 4$

$$n^2 = (5k+3)^2 = 5 \times (5k^2 + 6k + 1) + 4 = 5k' + 4$$

Donc : 4 est le reste de la division euclidienne de
$$n^2$$
 Par 5

5^{ére}cas:
$$n = 5k + 4$$
 alors $n^2 = (5k + 4)^2 = 25k^2 + 40k + 16 = (25k^2 + 40k + 15) + 1$

$$n^2 = (5k+4)^2 = 5 \times (5k^2 + 8k + 3) + 1 = 5k' + 1$$

Donc : 1 est le reste de la division euclidienne de
$$n^2$$
 Par 5

Donc : L'ensemble des restes de la division euclidienne de
$$n^2$$
 Par 5 est : $E = \{0,1,4\}$

2) Nous raisonnons par l'absurde en supposant :
$$\exists k \in \mathbb{N}$$
 ; $\sqrt{5k+12} \in \mathbb{N}$

Donc:
$$\exists k \in \mathbb{N} \text{ et } \exists n \in \mathbb{N} \text{ ; } \sqrt{5k+12} = n$$

Donc:
$$\exists k \in \mathbb{N} \text{ et } \exists n \in \mathbb{N}; 5k+12=n^2$$

Donc:
$$\exists k \in \mathbb{N}$$
 et $\exists n \in \mathbb{N}$; $5k+10+2=n^2$

Donc:
$$\exists k \in \mathbb{N} \text{ et } \exists n \in \mathbb{N} \text{ ; } 5(k+2)+2=n^2$$

Donc :
$$\exists n \in \mathbb{N}$$
 tel que 2 est le reste de la division euclidienne de n^2 Par 5

Nous obtenons donc une contradiction avec la faite que : L'ensemble des restes de la division euclidienne de n^2 par 5 est : $E = \{0;1;4\}$ car 2 ne peut pas être le reste de la division euclidienne de n^2 par 5

Exercice15: Montrer que :
$$\forall n \in \mathbb{N}$$
 ; 7 divise $3^{2n} - 2^n$

Solution : 1étapes : l'initialisation : Pour n=0 nous avons
$$3^{2n} - 2^n = 3^0 - 2^0 = 1 - 1 = 0$$
 et 7 divise 0 Donc P (0) est vraie.

C'est-à-dire :
$$\exists k \in \mathbb{N} / 3^{2n} - 2^n = 7k$$

Montrons alors que :
$$\exists k' \in \mathbb{N} / 3^{2n+2} - 2^{n+1} = 7k'$$
 ??

$$3^{2n+2} - 2^{n+1} = 3^2 \times 3^{2n} - 2^1 \times 2^n = 9 \times 3^{2n} - 2 \times 2^n = (7+2) \times 3^{2n} - 2 \times 2^n = 7 \times 3^{2n} + 2 \times 3^{2n} - 2 \times 2^n = (7+2) \times 3^n - 2 \times 2^n =$$

$$=7\times3^{2n}+2\times(3^{2n}-2^n)=7\times3^{2n}+2\times7k=7\times(3^{2n}+2k)=7k'$$
 avec $k'=3^{2n}+2k$

Donc P(n+1) est vraie.

Conclusion : Par le principe de récurrence on a :
$$\forall n \in \mathbb{N}$$
 ; 7 divise $3^{2n} - 2^n$

Erreur classique dans les récurrences

Exercice16: Pour tout entier naturel n, on considère les deux propriétés suivantes:

$$P(n)$$
: $4^n - 1$ est divisible par 3 et $Q(n)$: $4^n + 1$ est divisible par 3

1) Démontrer que :
$$P(n) \Rightarrow P(n+1)$$

2) Démontrer que :
$$Q(n) \Rightarrow Q(n+1)$$

3) Un élève affirme : " Donc P(n) et Q(n) sont vraies pour tout entier naturel n ".

Expliquer pourquoi il commet une erreur grave.

4) Démontrer que
$$P(n)$$
 est vraie pour tout entier naturel n.

5) Que penser, alors, de l'assertion :
$$(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N}): n \geq n_0 \Longrightarrow Q(n)$$

Solution :1) Démontrons que :
$$P(n) \Rightarrow P(n+1)$$

Supposons que :
$$4^n - 1$$
 est divisible par 3 c'est-à-dire : $\exists k \in \mathbb{N} \ / \ 4^n - 1 = 3k$

Montrons que : $4^{n+1}-1$ est divisible par 3 ??

$$4^{n+1}-1=4^n\times 4^1-1=(3k+1)\times 4-1=3\times 4k+4-1=3\times 4k+3=3\times (4k+1)=3\times k'$$

Donc: $4^{n+1}-1$ est divisible par 3 Donc: $P(n) \Rightarrow P(n+1)$

2) Démontrons que : $Q(n) \Rightarrow Q(n+1)$

Supposons que : $4^n + 1$ est divisible par 3 c'est-à-dire : $\exists k \in \mathbb{N} / 4^n + 1 = 3k$

Montrons que : $4^{n+1} + 1$ est divisible par 3 ??

$$4^{n+1} + 1 = 4^n \times 4^1 + 1 = (3k-1) \times 4 + 1 = 4 \times 3k - 4 + 1 = 4 \times 3k - 3 = 3 \times (4k-1) = 3 \times k'$$

Donc: $4^{n+1} + 1$ est divisible par 3

Donc: $Q(n) \Rightarrow Q(n+1)$

3) Cet élève qui affirme : " Donc P(n) et Q(n) sont vraies pour tout entier naturel n ".

Il commet une erreur : en effet : Pour n=0 : $4^0 + 1 = 1 + 1 = 2$ n'est pas divisible par 3

La proposition : « $\forall n \in \mathbb{N} \ 4^n + 1$ est divisible par 3 » est fausse bien que : $Q(n) \Rightarrow Q(n+1)$

4) Démontrons que P(n) est vraie pour tout entier naturel n.

1étapes : l'initialisation : Pour n = 0 nous avons : $4^0 - 1 = 1 - 1 = 0$ et 0 est divisible par 3

Donc P(0) est vraie.

L'hérédité : 2étapes : soit : $n \in \mathbb{N}$

Supposons que P(n) soit vraie c'est-à-dire : $\exists k \in \mathbb{N} / 4^n - 1 = 3k$

Montrons que : $4^{n+1}-1$ est divisible par 3??

$$4^{n+1}-1=4^n\times 4^1-1=(3k+1)\times 4-1=3\times 4k+4-1=3\times 4k+3=3\times (4k+1)=3\times k'$$

Donc: $4^{n+1}-1$ est divisible par 3

Donc : P(n+1) est vraie.

Conclusion. Par le principe de récurrence on a : « $\forall n \in \mathbb{N} \ 4^n - 1 \, \text{est divisible par 3}$ » (vraie)

5)Par l'absurde : Supposons que : $(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N}) : n \geq n_0 \Rightarrow Q(n)$

Donc; $n \ge n_0 \Longrightarrow \exists k' \in \mathbb{N} / 4^n + 1 = 3k$ 1

Or on a montré que : $\exists k \in \mathbb{N} / 4^n - 1 = 3k$ 2

1-2
$$\Rightarrow \exists k; k' \in \mathbb{N} / 2 = 3(k-k') = 3k'' \text{ avec } k'' = k-k' \in \mathbb{N}$$

⇒3 divise 2 : absurdes ou contradiction avec 3 ne divise pas 2

Donc: $(\exists n_0 \in \mathbb{N})(\forall n \in \mathbb{N}): n \geq n_0 \Rightarrow Q(n)$ est fausse.

Attention : Erreur classique dans les récurrences ne pas commettre il ne faut pas oublier 1étapes : l'initialisation

Exercice17 : Montrer que :
$$\forall n \in \mathbb{N}^*$$
 : $S_n = \sum_{k=1}^{k=n} k(n-k) = \frac{n(n^2-1)}{6}$.

Solution: Notons P(n) la proposition: "
$$S_n = \sum_{k=1}^{k=n} k(n-k) = \frac{n(n^2-1)}{6}$$
"

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

1étapes : l'initialisation : Pour n=1 nous avons :

$$S_1 = \sum_{k=1}^{k=1} 1(1-1) = 0$$
 et $\frac{1(1^2-1)}{6} = 0$ Donc P(1) est vraie.

L'hérédité : 2étapes : Soit $n \in \mathbb{N}^*$

Supposons que P(n) soit vraie c'est-à-dire :
$$S_n = \sum_{k=1}^{k=n} k \left(n-k\right) = \frac{n\left(n^2-1\right)}{6} = \frac{n\left(n-1\right)\left(n+1\right)}{6}$$

PROF: ATMANI NAJIB

7

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que :
$$S_{n+1} = \sum_{k=1}^{k=n+1} k(n+1-k) = \frac{n(n+1)(n+2)}{6}$$
 ??

On a :
$$S_{n+1} = \sum_{k=1}^{k=n+1} k (n+1-k) = \sum_{k=1}^{k=n} k (n+1-k) + (n+1)(n+1-(n+1)) = \sum_{k=1}^{k=n} k (n-k) + \sum_{k=1}^{k$$

et on a d'après l'hypothèse de récurrence:
$$S_n = \sum_{k=1}^{k=n} k(n-k) = \frac{n(n^2-1)}{6}$$

$$\mathsf{Donc}: \ S_{n+1} = \sum_{k=1}^{k=n+1} k \left(n+1-k \right) = \frac{n \left(n^2-1 \right)}{6} + \frac{n \left(n+1 \right)}{2} = \frac{n \left(n^2-1 \right) + 3n \left(n+1 \right)}{6} = \frac{n \left(n+1 \right) \left(n-1 \right) + 3n \left(n+1 \right)}{6}$$

Donc:
$$S_{n+1} = \frac{n(n+1)(n-1+3)}{6} = \frac{n(n+1)(n+2)}{6}$$

C'est-à-dire : P(n+1) est vraie

Conclusion : Par le principe de récurrence on a : $\forall n \in \mathbb{N}^*$: $S_n = \sum_{k=1}^{k=n} k(n-k) = \frac{n(n^2-1)}{6}$.

Exercice18 : Soient : X_1 ; X_2 ; X_3 ; ; X_n des nombres réels dans [0;1]

Montrer que :
$$\forall n \in \mathbb{N}^*$$
: $\prod_{k=1}^{k=n} (1-x_k) \ge 1 - \sum_{k=1}^{k=n} x_k$.

Solution: Notons P(n) La proposition "
$$\prod_{k=1}^{k=n} (1-x_k) \ge 1 - \sum_{k=1}^{k=n} x_k$$
"

Nous allons démontrer par récurrence que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

1étapes : l'initialisation : Pour n=1 nous avons
$$\prod_{k=1}^{k=1} (1-x_k) = 1-x_1$$
 et $1-\sum_{k=1}^{k=1} x_k = 1-x_1$

Donc:
$$\prod_{k=1}^{k=1} (1-x_k) \ge 1 - \sum_{k=1}^{k=1} x_k$$
 par suite P(1) est vraie.

L'hérédité : 2étapes : Soit $n \in \mathbb{N}^*$

Supposons que P(n) soit vraie c'est-à-dire :
$$\prod_{k=1}^{k=n} (1-x_k) \ge 1 - \sum_{k=1}^{k=n} x_k$$

3étapes : Nous allons montrer que P(n+1) est vraie.

Montrons alors que :
$$\prod_{k=1}^{k-n+1} (1-x_k) \ge 1 - \sum_{k=1}^{k-n+1} x_k$$
 ??

On a d'après l'hypothèse de récurrence :
$$\prod_{k=1}^{k=n} (1-x_k) \ge 1 - \sum_{k=1}^{k=n} x_k$$
 et comme : $1-x_{n+1} \ge 0$ car

$$x_{n+1} \in [0;1]$$

Donc:
$$(1-x_{n+1})\prod_{k=1}^{k=n}(1-x_k) \ge \left(1-\sum_{k=1}^{k=n}x_k\right)(1-x_{n+1})$$

Donc:
$$\prod_{k=1}^{k=n+1} (1-x_k) \ge 1 - \sum_{k=1}^{k=n} x_k - x_{n+1} + x_{n+1} \sum_{k=1}^{k=n} x_k$$

Donc:
$$\prod_{k=1}^{k=n+1} (1-x_k) \ge 1 - \left(\sum_{k=1}^{k=n} x_k + x_{n+1}\right) + \left(x_{n+1} \sum_{k=1}^{k=n} x_k\right)$$

Donc:
$$\prod_{k=1}^{k=n+1} (1-x_k) \ge 1 - \sum_{k=1}^{k=n+1} x_k + \left(x_{n+1} \sum_{k=1}^{k=n} x_k \right)$$
 et puisque : $x_{n+1} \sum_{k=1}^{k=n} x_k \ge 0$ alors :

$$1 - \sum_{k=1}^{k=n+1} x_k + \left(x_{n+1} \sum_{k=1}^{k=n} x_k \right) \ge 1 - \sum_{k=1}^{k=n+1} x_k$$

Par suite on a :
$$\prod_{k=1}^{k=n+1} (1-x_k) \ge 1 - \sum_{k=1}^{k=n+1} x_k$$
 c'est-à-dire : P(n+1) est vraie.

Conclusion : Par le principe de récurrence on a :
$$\forall n \in \mathbb{N}^*$$
 : $\prod_{k=1}^{k=n} (1-x_k) \ge 1 - \sum_{k=1}^{k=n} x_k$

Exercice19: Résoudre dans
$$\mathbb{R}$$
 l'inéquation suivante : (I) $\sqrt{3-x} - \sqrt{x+1} \succ \frac{1}{2}$

Solution : On va Opérer par disjonction de cas :

On cherche l'ensemble de définition de l'Inéquation :

$$D = \{x \in \mathbb{R} \mid x+1 \ge 0 \text{ et } 3-x \ge 0\} = \{x \in \mathbb{R} \mid x \ge -1 \text{ et } x \le 3\} = [-1;3]$$

Soit $x \in [-1;3]$ et S l'ensemble des solutions de (I)

1 cas : si
$$\sqrt{3-x} - \sqrt{x+1} \le 0 \iff \sqrt{3-x} \le \sqrt{x+1} \iff 3-x \le x+1$$

$$\Leftrightarrow 2 \le 2x \Leftrightarrow x \ge 1 \text{ et } x \in [-1;3] \Leftrightarrow x \in [1;3]$$

Donc : l'Inéquation n'admet pas de solution c'est-à-dire : $S_1 = \emptyset$

2 cas : si alors
$$\sqrt{3-x} - \sqrt{x+1} \succ 0$$

$$x \in S_2 \Leftrightarrow \sqrt{3-x} - \sqrt{x+1} \succeq \frac{1}{2} \Leftrightarrow \left(\sqrt{3-x} - \sqrt{x+1}\right)^2 \succeq \left(\frac{1}{2}\right)^2 \Leftrightarrow 3-x+x+1-2\sqrt{(x+1)(3-x)} \succeq \frac{1}{4}$$

$$\Leftrightarrow 4 - 2\sqrt{(x+1)(3-x)} \succ \frac{1}{4} \Leftrightarrow 16 - 8\sqrt{(x+1)(3-x)} \succ 1 \Leftrightarrow -8\sqrt{(x+1)(3-x)} \succ -15$$

$$\Leftrightarrow \sqrt{-x^2+2x+3} \prec \frac{15}{8} \Leftrightarrow -x^2+2x+3 \prec \frac{225}{64} \Leftrightarrow x^2-2x-3 \succ \frac{225}{64} \Leftrightarrow x^2-2x+1-4 \succ \frac{225}{64}$$

$$\Leftrightarrow (x-1)^2 \succ \frac{31}{64} \Leftrightarrow \sqrt{(x-1)^2} \succ \sqrt{\frac{31}{64}} \Leftrightarrow |x-1| \succ \frac{\sqrt{31}}{8} \text{ Mais} : x \in [-1;1[\text{ donc} : x-1 \prec 0])$$

$$\Leftrightarrow -x-1 \succ \frac{\sqrt{31}}{8} \Leftrightarrow -x \succ \frac{\sqrt{31}}{8} - 1 \Leftrightarrow x \prec 1 - \frac{\sqrt{31}}{8}$$
; On peut vérifier que : $-1 \prec 1 - \frac{\sqrt{31}}{8} \prec 1$

$$x \in S_2 \Leftrightarrow x \in \left[-1; 1 - \frac{\sqrt{31}}{8}\right] \; ; \quad \text{Donc } S_2 = \left[-1; 1 - \frac{\sqrt{31}}{8}\right]$$

Donc:
$$S = \varnothing \cup \left[-1; 1 - \frac{\sqrt{31}}{8}\right] = \left[-1; 1 - \frac{\sqrt{31}}{8}\right]$$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

