http://www.xriadiat.com/

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Correction Série N°7: ENSEMBLES ET APPLICATIONS

Exercice1: On considère les deux ensembles suivants : $A = \left\{ x \in \mathbb{N} / \frac{2x+16}{x+2} \in \mathbb{N} \right\}$ et

$$B = \left\{ x \in \mathbb{Z} - \{-1\} / \frac{x^3 - x + 6}{x + 1} \in \mathbb{Z} \right\}$$

1) Vérifier que :
$$(\forall x \in \mathbb{Z} - \{-1\}); \frac{x^3 - x + 6}{x + 1} = x^2 - x + \frac{6}{x + 1}$$

2) Déterminer :
$$A$$
 ; B ; $A \cap B$; $A - B$ et $A \cup B$ en extension

Solution : 1) 1) soit : $x \in \mathbb{Z} - \{-1\}$

$$x^{2} - x + \frac{6}{x+1} = \frac{(x^{2} - x)(x+1) + 6}{x+1} = \frac{x^{3} + x^{2} - x^{2} - x + 6}{x+1} = \frac{x^{3} - x + 6}{x+1}$$

2) a) Détermination de :
$$A$$
 ? $A = \left\{ x \in \mathbb{N} / \frac{2x+16}{x+2} \in \mathbb{N} \right\}$

Soit $x \in \mathbb{N}$:

$$\frac{2x+16}{x+2} = \frac{2x+4+12}{x+2} = \frac{2x+4}{x+2} + \frac{12}{x+2} = 2 + \frac{12}{x+2}$$

$$x \in A \Leftrightarrow 2 + \frac{12}{x+2} \in \mathbb{N} \Leftrightarrow \frac{12}{x+2} \in \mathbb{N} \text{ Car } \frac{12}{x+2} \ge 0$$

$$x \in A \Leftrightarrow x \neq -2 \ et \ x+2 \ divise 12$$

$$\Leftrightarrow x + 2 \in \{1; 2; 3; 4; 6; 12\} \Leftrightarrow x \in \{0; 1; 2; 3; 4; 10\}$$

Donc:
$$A = \{0;1;2;3;4;10\}$$

b) Détermination de
$$B$$
 en extension : On a : $B = \left\{ x \in \mathbb{Z} - \left\{ -1 \right\} / x^2 - x + \frac{6}{x+1} \in \mathbb{Z} \right\}$

Soit: $x \in \mathbb{Z} - \{-1\}$:

$$x \in B \Leftrightarrow x \in \mathbb{Z} - \{-1\}$$
 et $x^2 - x + \frac{6}{x+1} \in \mathbb{Z}$

$$\Leftrightarrow x \in \mathbb{Z} - \{-1\}$$
 et $\frac{6}{x+1} \in \mathbb{Z}$

$$\Leftrightarrow x+1$$
 divise 6

$$\Leftrightarrow x+1 \in \{-6; -3; -2; -1; 1; 2; 3; 6\} \Leftrightarrow x \in \{-7; -4; -3; -2; 0; 1; 2; 5\}$$

Donc:
$$B = \{-7, -4, -3, -2, 0, 1, 2, 5\}$$

Détermination de :
$$A \cap B$$
 ; $A - B$ et $A \cup B$?

On a:
$$A = \{0;1;2;3;4;10\}$$
 et $B = \{-7;-4;-3;-2;0;1;2;5\}$

Donc:
$$A \cap B = \{0,1,2\}$$

$$A - B = \{3; 4; 10\}$$

$$A \cup B = \{0;1;2;3;4;10;-7;-3;-2;5\}$$

Exercice2: Soient les ensembles : $H = \left\{ y \in \mathbb{R} \mid y = \frac{1}{\sqrt{x^2 + 1}} : x \in \mathbb{R} \right\}$; $G = \left\{ y \in \mathbb{R} \mid y = \frac{1}{1 + \sqrt{x^2 + 1}} : x \in \mathbb{R} \right\}$

- 1) Montrer que : H = [0;1]
- a) Considérer un élément $\, {oldsymbol {\cal Y}}_0 \in H \,$ et montrer que : ${oldsymbol {\cal Y}}_0 \in \left]0;1
 ight]$
- b) Considérer un élément $\mathcal{Y}_0 \in]0,1]$ et montrer que : $\mathcal{Y}_0 \in H$.
- 2)Monter que $G \subset H$
- 3) Est-ce que G = H?

Solution: 1)a) soit un élément $y_0 \in H$ montrons que $y_0 \in]0,1]$?

$$y_0 \in H \Rightarrow \exists x_0 \in \mathbb{R} / y_0 = \frac{1}{\sqrt{x_0^2 + 1}}$$

On a
$$x_0^2 \ge 0 \Rightarrow x_0^2 + 1 \ge 1 \Rightarrow \sqrt{x_0^2 + 1} \ge 1 \Rightarrow \frac{1}{\sqrt{x_0^2 + 1}} \le 1 \Rightarrow y_0 \in]0,1]$$
 Donc : $H \subset]0;1]$ (1)

b) Considérer un élément $y_0 \in]0,1]$ et montrons que $y_0 \in H$?

$$y_0 \in]0;1]$$
 $\exists ? x_0 \in \mathbb{R} / y_0 = \frac{1}{\sqrt{x_0^2 + 1}}$

$$y_0 = \frac{1}{\sqrt{x_0^2 + 1}} \iff y_0^2 = \frac{1}{x_0^2 + 1} \iff x_0^2 = \frac{1}{y_0^2} - 1$$

Or:
$$y_0 \in]0;1]$$
 donc $0 \prec y_0 \le 1$ donc: $\frac{1}{{y_0}^2} - 1 \ge 0$

Donc : il suffit de prendre :
$$x_0 = \sqrt{\frac{1}{{y_0}^2} - 1}$$
 Donc : $y_0 \in H$

Donc :
$$]0;1] \subset H$$
 (2)

De : (1) et (2) en déduit que :
$$H = [0;1]$$

2) Montrons que
$$G \subset H$$
?

Montrons que :
$$G \subset [0;1]$$
 ?

Soit un élément $y_0 \in G$ montrons que $y_0 \in (0,1]$?

$$y_0 \in G \Rightarrow \exists x_0 \in \mathbb{R} / y_0 = \frac{1}{1 + \sqrt{x_0^2 + 1}}$$

On a
$$x_0^2 \ge 0 \Rightarrow x_0^2 + 1 \ge 1 \Rightarrow \sqrt{x_0^2 + 1} \ge 1 \Rightarrow \sqrt{x_0^2 + 1} + 1 \ge 2 \Rightarrow 0 < \frac{1}{1 + \sqrt{x_0^2 + 1}} \le \frac{1}{2} \le 1$$

Donc :
$$y_0 \in]0,1]$$
 Donc : $G \subseteq H$

3) supposons :
$$G = H$$

On a
$$1 \in H \Rightarrow 1 \in G$$

$$\Rightarrow \exists x_0 \in \mathbb{R} / 1 = \frac{1}{1 + \sqrt{x_0^2 + 1}} \Rightarrow \exists x_0 \in \mathbb{R} / 1 + \sqrt{x_0^2 + 1} = 1 \Rightarrow \exists x_0 \in \mathbb{R} / \sqrt{x_0^2 + 1} = 0$$

$$\Rightarrow \exists x_0 \in \mathbb{R} / x_0^2 = -1$$
 Absurde donc : $H \neq G$

Exercice3 : Soient
$$A \ ; \ B \ ; \ C$$
 des parties d'un ensemble E .

Monter que :
$$\begin{cases} B - A = C - A \\ A \cap B = A \cap C \end{cases} \Rightarrow B = C$$

Solution : On suppose que :
$$B - A = C - A$$
 et $A \cap B = A \cap C$

\subseteq) Montrons que $B \subseteq C$?

Soit
$$x \in B$$

Si
$$x \in A \Rightarrow x \in B$$
 et $x \in A \Rightarrow x \in A \cap B$

$$\Rightarrow x \in A \cap C$$
 car: $A \cap B = A \cap C$

C'est-à-dire :
$$x \in C$$

Si
$$x \notin A \Rightarrow x \in B - A \Rightarrow x \in C - A$$
 C'est-à-dire : $x \in C$

Dans tous les cas, on conclut que :
$$B \subset C$$

$$\supset$$
) Montrons que $C \subset B$?

La même démarche car B et C jouent des rôles symétriques.

On a donc :
$$B \subset C$$
 et $C \subset B$

Conclusion :
$$B = C$$

Exercice4: Soit E un ensemble et F et G deux parties de E. Démontrer que : 1)
$$F \subset G \Leftrightarrow F \cup G = G$$

2)
$$F \subset G \Leftrightarrow F \cap C_E^G = \emptyset$$

Solution : Il s'agit de résultats du cours, on peut les utiliser sans démonstration mais c'est l'objet de cet exercice.

1) Supposons que $F \subset G$. Si $x \in F \cup G$

Alors
$$x \in F \subset G$$
 ou $x \in G$ alors $x \in G$.

Donc
$$F \cup G \subset G$$
. Si $x \in G$ alors $x \in F \cup G$,

Par conséquent
$$F \cup G = G$$
.

On a montré que
$$F \subset G \Rightarrow F \cup G = G$$

Supposons que
$$F \cup G = G$$
.

Soit
$$x \in F$$
, $x \in F \cup G = G$ donc $x \in G$.

On a montré que
$$F \cup G = G \Rightarrow F \subset G$$
.

Finalement
$$F \subset G \Leftrightarrow F \cup G = G$$
.

2) Supposons que
$$F \subset G$$
.

Si
$$x \in F \cap CEG$$
, $x \in F$ et $x \notin G \supset F$

Donc
$$x \in F$$
 et $x \notin F$ ce qui est impossible par conséquent $F \cap CEG = \emptyset$.

On a montré que
$$F \subset G \Rightarrow F \cap CEG = \emptyset$$

Supposons que
$$F \cap CEG = \emptyset$$
.

Soit
$$x \in F$$
, supposons que $x \notin G \Leftrightarrow x \in CEG$

Ce qui signifie que
$$x \in F \cap CEG = \emptyset$$
, c'est impossible donc l'hypothèse $x \notin G$ est fausse,

Par conséquent
$$x \in G$$
 et $F \subset G$.

On a montré que
$$F \cap CEG = \emptyset \Rightarrow F \subset G$$
.

Finalement
$$F \subset G \Leftrightarrow F \cap CEG = \emptyset$$

Exercice5: Soient
$$A$$
; B ; C des parties d'un ensemble E .

Monter que :
$$\begin{cases} A \cap C \subset B \cap C \\ A - C = B - C \end{cases} \Rightarrow A \subset B$$

Solution : On suppose que :
$$A \cap C \subset B \cap C$$
 et $A - C = B - C$

Montrons que
$$A \subset B$$
 ?

Soit
$$x \in A$$

Si
$$x \in C \Rightarrow x \in A \cap C \Rightarrow x \in B \cap C$$
 C'est-à-dire : $x \in B$

Si
$$x \notin C \Rightarrow x \in A - C \Rightarrow x \in B - C$$
 C'est-à-dire : $x \in B$

Dans tous les cas, on conclut que :
$$A \subset B$$

Exercice6: On rappelle que l'on note :
$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

1) Montrer que :

a)
$$(A \cap B) \cap (\overline{A \cap C}) = A \cap B \cap \overline{C}$$

b)
$$(A \cap C) \cap (\overline{A \cap B}) = A \cap C \cap \overline{B}$$

2) En déduire que
$$(A \cap B) \Delta (A \cap C) = A \cap (B\Delta C)$$

Solution :1) a)
$$(A \cap B) \cap (\overline{A \cap C}) = (A \cap B) \cap (\overline{A} \cup \overline{C}) = (A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C})$$

$$= ((A \cap \overline{A}) \cap B) \cup (A \cap B \cap \overline{C}) \quad \text{or} : A \cap \overline{A} = \emptyset$$

$$= (\emptyset \cap B) \cup (A \cap B \cap \overline{C}) = \emptyset \cup (A \cap B \cap \overline{C}) \quad \text{car} \quad \emptyset \cap B = \emptyset$$

$$= A \cap B \cap \overline{C} \quad \text{car} \quad \emptyset \cup (A \cap B \cap \overline{C}) = A \cap B \cap \overline{C}$$

Donc: $(A \cap B) \cap (\overline{A \cap C}) = A \cap B \cap \overline{C}$

b)
$$(A \cap C) \cap (\overline{A \cap B}) = (A \cap C) \cap (\overline{A} \cup \overline{B}) = (A \cap C \cap \overline{A}) \cup (A \cap C \cap \overline{B})$$

$$=((A \cap \overline{A}) \cap C) \cup (A \cap C \cap \overline{B})$$
 or $A \cap \overline{A} = \emptyset$

$$= (\varnothing \cap C) \cup (A \cap C \cap \overline{B}) = \varnothing \cup (A \cap C \cap \overline{B}) \text{ car } \varnothing \cap C = \varnothing$$

$$=A\cap C\cap \overline{B}$$
 car $\varnothing \cup \left(A\cap C\cap \overline{B}\right)=A\cap C\cap \overline{B}$

Donc: $(A \cap C) \cap (\overline{A \cap B}) = A \cap C \cap \overline{B}$

2)
$$(A \cap B) \Delta (A \cap C) = ((A \cap B) \setminus (A \cap C)) \cup ((A \cap C) \setminus (A \cap B))$$

$$= \big(A \cap B\big) \cap \Big(\overline{A \cap C}\Big) \cup \big(A \cap C\big) \cap \Big(\overline{A \cap B}\Big)$$

$$= \left(A \cap B \cap \overline{C}\right) \cup \left(A \cap C \cap \overline{B}\right) = A \cap \left(\left(B \cap \overline{C}\right) \cup \left(C \cap \overline{B}\right)\right)$$

$$=A\cap ((B-C)\cup (C-B))=A\cap (B\Delta C)$$

Exercice7: L'ensemble A^2 contient 9 éléments dont deux éléments sont (x; y) et (x; z) quels sont les autres éléments de A^2 ?

2) Existe-t-il une ensemble A tel que $card(A^2) = 7$?

Solution :1) on sait que : $card(A^2) = card(A \times A) = card(A) \times card(A) = (card(A))^2$

L'ensemble A^2 contient 9 éléments donc : $(card(A))^2 = 9$

Donc : $card(A) = \sqrt{9} = 3$

$$(x; y) \in A^2 \Leftrightarrow x \in A \text{ et } y \in A$$

$$(y;z) \in A^2 \Leftrightarrow z \in A \ et \ y \in A$$

Donc : $A = \{x, y, z\}$

Donc:
$$A^2 = \{(x;y);(y;x);(x;z);(z;x);(y;z);(z;y);;(x;x);(y;y);(z;z)\}$$

2)
$$(card(A))^2 = 7 \Leftrightarrow card(A) = \sqrt{7} \notin \mathbb{N}$$

Donc : il n'existe pas un ensemble A tel que $card(A^2) = 7$

Exercice8: Soient E et F deux ensembles. A_1 , $A_2 \subset E$ et $B \subset F$.

1)Monter que:

a)
$$(A_1 \cup A_2 \times B) = (A_1 \times B) \cup (A_2 \times B)$$

b)
$$(A_1 \cap A_2) \times B = (A_1 \times B) \cap (A_2 \times B)$$

c) Donner les mêmes résultats pour A × (B₁ \cap B₂) et : A × (B₁ \cup B₂).

Solution: Établissons ce résultat seulement pour l'union (la démonstration est identique pour l'intersection):

$$(\ x\ ,\ y\)\in (A_1\cup A_2\)\times B\Leftrightarrow x\in A_1\cup A_2\ et\ y\in B$$

$$\Leftrightarrow (x \in A_1 \text{ et } y \in B) \text{ ou } (x \in A_2 \text{ et } y \in B) \Leftrightarrow (x, y) \in A_1 \times B \text{ ou } (x, y) \in A_2 \times B$$

$$\Leftrightarrow$$
 $(x, y) \in (A_1 \times B) \cup (A_2 \times B)$

Exercice9: Soient l'ensemble:

$$L = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}$$
 et $G = [-1, 1]$

- 1) Monter qu'il n'existe pas deux parties A et B de \mathbb{R} tels que : $L = A \times B$
- 2) Monter que : $L \subset G^2$ et $L \neq G^2$

Solution : On suppose : qu'il existe deux parties A et B de \mathbb{R} tels que : $L = A \times B$

On a :
$$(1;0) \in L$$
 et $(0;1) \in L$

Donc:
$$1 \in A$$
 et $1 \in B$ car $L = A \times B$

Donc:
$$(1;1) \in A \times B$$
 cad $(1;1) \in L$

Donc contradiction car :
$$1^2 + 1^2 > 1$$

Conclusion il n'existe pas deux parties A et B de \mathbb{R} tels que : $L = A \times B$

2) Montrons que :
$$L \subset G^2$$
 et $L \neq G^2$

Soit un élément
$$(x; y) \in L$$
 montrons que $(x; y) \in G^2$?

$$(x; y) \in L \Rightarrow x^2 + y^2 \le 1$$

Comme:
$$x^2 \le x^2 + y^2 \le 1$$
 et $y^2 \le x^2 + y^2 \le 1$

Alors:
$$x^2 \le 1$$
 et $y^2 \le 1 \Rightarrow \sqrt{x^2} \le \sqrt{1}$ et $\sqrt{y^2} \le \sqrt{1}$

$$\Rightarrow |x| \le \sqrt{1}$$
 et $|y| \le \sqrt{1} \Rightarrow -1 \le x \le 1$ et $-1 \le y \le 1$

$$\Rightarrow x \in [-1;1] \text{ et } y \in [-1;1] \Rightarrow (x;y) \in G^2$$

Par suite :
$$L \subset G^2$$

Comme:
$$1 \in G$$
 Donc: $(1;1) \in G^2$

Mais:
$$(1;1) \notin L$$
 car: $1^2 + 1^2 > 1$

Alors :
$$L \neq G^2$$

Exercice10: Soit
$$n \in \mathbb{N}^*$$
; On pose: $\forall k \in \{0;1;2;....;n-1\} = E$; $I_k = \left\lceil \frac{k}{n}; \frac{k+1}{n} \right\rceil$

1) Montrer que :
$$\forall k \in E \ I_k \subset [0;1]$$

2) Montrer que :
$$\forall (k;k') \in E^2$$
 ; $k \neq k' \implies I_k \cap I_{k'} = \emptyset$

Solution : 1) Montrons :
$$\forall k \in E \ I_k \subset [0;1]$$

Soit:
$$k \in E$$
 et $x \in I_k$ Montrons que: $x \in [0;1]$???

On a:
$$x \in I_k$$
 donc: $x \in \left[\frac{k}{n}; \frac{k+1}{n}\right]$

Donc:
$$\frac{k}{n} \le x < \frac{k+1}{n}$$
 or: $0 \le k \le n-1$

Donc:
$$1 \le k+1 \le n \Rightarrow \frac{1}{n} \le \frac{k+1}{n} \le 1$$

Donc:
$$0 \le \frac{k}{n} \le x < \frac{k+1}{n} \le 1 \Longrightarrow 0 \le x < 1 \Longrightarrow x \in [0;1[$$

Donc:
$$\forall k \in E \ I_k \subset [0;1]$$

2) Montrons que :
$$\forall (k;k') \in E^2$$

$$k \neq k' \implies I_{k} \cap I_{k'} = \emptyset$$

Supposons que :
$$k \neq k'$$
 et $I_k \cap I_{k'} \neq \emptyset$

$$k \neq k'$$
 et $I_k \cap I_{k'} \neq \emptyset \Rightarrow \exists x \in I_k \cap I_{k'}$ avec : $k \neq k'$

Supposons que par exemple que :
$$k \prec k'$$

$$k \prec k' \Rightarrow k+1 \leq k' \Rightarrow \frac{k+1}{n} \leq \frac{k'}{n} \otimes$$

$$x \in I_k \Rightarrow \frac{k}{n} \le x < \frac{k+1}{n}$$
 1

$$x \in I_{k'} \Rightarrow \frac{k'}{n} \le x < \frac{k'+1}{n}$$
 ②

① et ② et ©
$$\Rightarrow \frac{k}{n} \le x < \frac{k+1}{n} \le \frac{k'}{n} \le x \Rightarrow x < x$$

Absurde: Donc:
$$\forall (k;k') \in E^2$$
; $k \neq k' \Rightarrow I_k \cap I_{k'} = \emptyset$

Exercice11: Soit l'application :
$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 2x - |x| + 3$$

Déterminer la restriction de
$${\it f}$$
 sur l'intervalle $\left]-\infty;0\right]$

Solution:
$$f(x) = 2x - |x| + 3$$

Si
$$x \in [-\infty, 0]$$
 alors : $f(x) = 2x + x + 3 = 3x + 3$

Donc : la restriction de
$$f$$
 sur l'intervalle $]-\infty;0]$ est l'application $g:]-\infty;0] o \mathbb{R}$ $x\mapsto 3x+3$

Exercice12: Soit les applications:

$$f: \mathbb{R}^+ \to \mathbb{R} \text{ et } g: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x \qquad \text{et } x \mapsto 2|x| - x$$

Est-ce que g est un prolongement de
$$f$$
?

Solution:
$$g(x) = 2|x| - x = x$$
 Si $x \in \mathbb{R}^+$ et $\mathbb{R}^+ \subset \mathbb{R}$

Donc : g est un prolongement de
$${\it f}$$
 sur ${\mathbb R}$

$$:\mathbb{R} o\mathbb{R}$$

Exercice13: Soit l'application
$$f: x \mapsto \frac{2x}{x^2+1}$$

Montrer que :
$$f^{-1}([-1;1]) = \mathbb{R}$$

Solution:

$$x \in f^{-1}([-1;1]) \Leftrightarrow f(x) \in [-1;1]$$

$$\Leftrightarrow |f(x)| \le 1 \Leftrightarrow \left|\frac{2x}{x^2+1}\right| \le 1 \Leftrightarrow \frac{|2x|}{x^2+1} \le 1 \Leftrightarrow |2x| \le x^2+1$$

$$\Leftrightarrow 0 \le |x|^2 - 2|x| + 1 \Leftrightarrow 0 \le (|x| - 1)^2 \Leftrightarrow x \in \mathbb{R}$$

Donc:
$$f^{-1}([-1;1]) = \mathbb{R}$$

$$: \mathbb{R} \to \mathbb{R}$$

Exercice14: Soit l'application
$$f: x \mapsto f(x) = \begin{cases} 1 & si: x < 0 \\ 1+x & si: x \ge 0 \end{cases}$$

1) Déterminer les ensembles suivants :
$$f(\mathbb{R})$$
 ; $f^{-1}(\{0\})$; $f^{-1}(\{1\})$; $f^{-1}(\{-1\})$; $f^{-1}(\{-1\})$;

Solution: 1) a) On a:

$$f(\mathbb{R}) = \{ f(x) \in \mathbb{R} / x \in \mathbb{R} \}$$

Comme :
$$\mathbb{R} = \mathbb{R}^*_- \cup \mathbb{R}^+$$
 alors :

$$f(\mathbb{R}) = f(\mathbb{R}_{-}^* \cup \mathbb{R}_{-}^*) = f(\mathbb{R}_{-}^*) \cup f(\mathbb{R}_{-}^*)$$

On a:
$$f(\mathbb{R}^*_-) = \{1\}$$
 et $f(\mathbb{R}^+) = \{x + 1/x \in \mathbb{R}^+\} = [1; +\infty[$

Ce qui donne :
$$f(\mathbb{R}) = \{1\} \cup [1; +\infty[= [1; +\infty[$$

b)
$$f^{-1}(\{0\}) = \{x \in \mathbb{R} / f(x) \in \{0\}\} = \{x \in \mathbb{R} / f(x) = 0\}$$

Il suffit alors de résoudre l'équation :
$$f(x) = 0$$

Sur :
$$\mathbb{R}_{-}^{*}$$
 l'équation : $f(x) = 0$ n'admet pas de solution.

Sur:
$$\mathbb{R}^+$$
 $f(x) = 0 \Leftrightarrow x+1=0 \Leftrightarrow x=-1 \notin \mathbb{R}^+$

D'où : l'équation :
$$f(x) = 0$$
 n'admet pas de solution sur \mathbb{R}

$$\mathsf{Donc}: f^{-1}\big(\{0\}\big) = \varnothing$$

c)
$$f^{-1}(\{1\}) = \{x \in \mathbb{R} / f(x) \in \{1\}\} = \{x \in \mathbb{R} / f(x) = 1\}$$

Il suffit alors de résoudre l'équation : f(x)=1

$$\forall x \in \mathbb{R}^*_- f(x) = 1$$

Sur:
$$\mathbb{R}^+$$
 $f(x)=1 \Leftrightarrow x+1=1 \Leftrightarrow x=0 \in \mathbb{R}^+$

On obtient alors :
$$f^{-1}(\{1\}) = \{0\} \cup \mathbb{R}_{-}^{*} = \mathbb{R}^{-}$$

d)
$$f^{-1}(\{-1\}) = \{x \in \mathbb{R} / f(x) \in \{-1\}\} = \{x \in \mathbb{R} / f(x) = -1\}$$

Il suffit alors de résoudre l'équation :
$$f(x) = -1$$

Sur :
$$\mathbb{R}_{-}^{*}$$
 l'équation : $f(x) = -1$ n'admet pas de solution.

Sur:
$$\mathbb{R}^+$$
 $f(x) = -1 \Leftrightarrow x+1 = -1 \Leftrightarrow x = -2 \notin \mathbb{R}^+$

D'où : l'équation :
$$f(x) = -1$$
 n'admet pas de solution sur $\mathbb R$

Donc:
$$f^{-1}(\{-1\}) = \emptyset$$

e)
$$f^{-1}(]1;2]) = \{x \in \mathbb{R} / f(x) \in]1;2]\}$$

$$f^{-1}([1;2]) = \{x \in \mathbb{R} / 1 \prec x + 1 \leq 2\}$$

Il est clair qu'il n'existe pas de réels négatifs ayant une image positive.

$$\forall x \in \mathbb{R}^+ : 1 \prec x + 1 \leq 2 \Leftrightarrow 0 \prec x \leq 1$$

Ainsi :
$$f^{-1}(]1;2]) =]0;1]$$

2) a) - f n'est pas injective car :

$$f(-2) = f(-1) = 1$$
 et $-2 \neq -1$

b) f n'est pas surjective car par exemple 0 et -1 n'ont pas d'antécédents. En général, tous les éléments de l'intervalle]-∞;1[n'ont pas d'antécédents par l'application f.

PROF: ATMANI NAJIB

7

$$:$$
]2; $+\infty$ [\rightarrow \mathbb{R}

Exercice15: Soit
$$f$$
 l'application : $x \mapsto \frac{\sqrt{x}}{x+x^2}$

$$x \mapsto \frac{\sqrt{x}}{x+x}$$

1)Montrer que : f est injective

$$\mathbb{R}^+ \to \mathbb{R}$$

2)l'application
$$g: x \mapsto \frac{\sqrt{x}}{x+2}$$
 est-elle injective ? justifier

Solution : Montrons que :
$$f$$
 est injective : Soient $x_1 \in]2; +\infty[$ et $x_2 \in]2; +\infty[$

Montrons que :
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$
 ?

Supposons que :
$$f(x_1) = f(x_2)$$

Donc:
$$\frac{\sqrt{x_1}}{x_1 + 2} = \frac{\sqrt{x_2}}{x_2 + 2} \Rightarrow (x_2 + 2)\sqrt{x_1} = (x_1 + 2)\sqrt{x_2} \Rightarrow x_2\sqrt{x_1} + 2\sqrt{x_1} = x_1\sqrt{x_2} + 2\sqrt{x_2}$$

 $\Rightarrow x_2\sqrt{x_1} - x_1\sqrt{x_2} + 2\sqrt{x_1} - 2\sqrt{x_2} = 0 \Rightarrow \sqrt{x_1x_2}(\sqrt{x_2} - \sqrt{x_1}) - 2(\sqrt{x_1} - \sqrt{x_2}) = 0 \Rightarrow (\sqrt{x_2} - \sqrt{x_1})(\sqrt{x_1x_2} - 2) = 0$
 $\Rightarrow \sqrt{x_2} - \sqrt{x_1} = 0 \text{ ou } \sqrt{x_1x_2} - 2 = 0 \Rightarrow \sqrt{x_2} = \sqrt{x_1} \text{ ou } \sqrt{x_1x_2} = 2 \Rightarrow x_2 = x_1 \text{ ou } x_2x_1 = 4$

Or:
$$x_1 \in]2; +\infty[$$
 et $x_2 \in]2; +\infty[$ donc: $x_2x_1 \succ 4 \implies x_2x_1 \neq 4$

Donc:
$$\frac{\sqrt{x_1}}{x_1 + 2} = \frac{\sqrt{x_2}}{x_2 + 2} \Rightarrow x_2 = x_1$$

$$\mathbb{R}^+ \to \mathbb{R}$$

2) Montrons que :
$$g: x \mapsto \frac{\sqrt{x}}{x+2}$$
 n'est pas injective

On prend:
$$x_1 = 1$$
 et $x_2 = 4$: $g(1) = \frac{\sqrt{1}}{1+2} = \frac{1}{3}$ et $g(4) = \frac{\sqrt{4}}{4+2} = \frac{2}{6} = \frac{1}{3}$

On a donc :
$$1 \neq 4$$
 mais : $g(1) = g(4)$

$$f: \mathbb{R}^+ \to \mathbb{I}$$

Exercice16: Soit l'application :
$$x \mapsto \frac{\sqrt{x-1}}{\sqrt{x+3}}$$

2) Montrer que
$$f(\mathbb{R}^+) = \left[-\frac{1}{3};1\right]$$

3) Montrer que f est une bijection de
$$\mathbb{R}^+$$
 dans $\left[-\frac{1}{3};1\right[$ et déterminer sa bijection réciproque

Solution: 1)
$$f(x) = \frac{\sqrt{x} - 1}{\sqrt{x} + 3}$$

Soit
$$y \in \mathbb{R}$$
: Résolvons l'équation : $f(x) = y$

$$f(x) = y \Leftrightarrow \frac{\sqrt{x} - 1}{\sqrt{x} + 3} = y \Leftrightarrow \sqrt{x} - 1 = y(\sqrt{x} + 3)$$

$$\Leftrightarrow \sqrt{x} - y\sqrt{x} = 3y + 1 \Leftrightarrow \sqrt{x}(1 - y) = 3y + 1$$

Pour :
$$y=1$$
 on a : $0=+1$ absurde

Puisque l'équation
$$f(x) = 1$$
 n'admet pas de solution

2) Soit
$$x \in \mathbb{R}^+$$
; $f(x) = \frac{\sqrt{x} - 1}{\sqrt{x} + 3} = \frac{\sqrt{x} + 3 - 3 - 1}{\sqrt{x} + 3} = \frac{\sqrt{x} + 3}{\sqrt{x} + 3} - \frac{4}{\sqrt{x} + 3}$

Donc:
$$f(x)=1-\frac{4}{\sqrt{x}+3}$$
; $\forall x \in \mathbb{R}^+$

Soit
$$x \in \mathbb{R}^+ \implies x \ge 0 \implies \sqrt{x} \ge 0 \implies \sqrt{x} + 3 \ge 3$$

$$\Rightarrow 0 \prec \frac{1}{\sqrt{x}+3} \leq \frac{1}{3} \Rightarrow -\frac{4}{3} \leq \frac{-4}{\sqrt{x}+3} \prec 0 \Rightarrow -\frac{4}{3}+1 \leq \frac{-4}{\sqrt{x}+3}+1 \prec 1$$

$$\Rightarrow -\frac{1}{3} \le 1 - \frac{4}{\sqrt{x} + 3} < 1 \Rightarrow -\frac{1}{3} \le f(x) < 1$$

$$\mathsf{Donc}:\, f\!\left(\mathbb{R}^{\scriptscriptstyle{+}}\right)\!\!\subset\!\!\left\lceil\!-\frac{1}{3};\!1\!\right\lceil\!$$

Inversement : Soit
$$y \in \left[-\frac{1}{3}; 1 \right]$$

Résolvons l'équation :
$$f(x) = y$$

$$f(x) = y \Leftrightarrow \frac{\sqrt{x} - 1}{\sqrt{x} + 3} = y \Leftrightarrow \sqrt{x} - 1 = y(\sqrt{x} + 3)$$

$$\Leftrightarrow \sqrt{x} - y\sqrt{x} = 3y + 1 \Leftrightarrow \sqrt{x}(1 - y) = 3y + 1 \Leftrightarrow \sqrt{x} = \frac{3y + 1}{1 - y} \text{ et Puisque } y \in \left[-\frac{1}{3}; 1 \right]$$

Alors:
$$-\frac{1}{3} \le y < 1 \Rightarrow -1 \le 3y < 3 \Rightarrow 0 \le 3y + 1 \text{ et } 1 - y > 0$$

$$\mathsf{Donc}: \frac{3y+1}{1-y} \ge 0$$

Par suite :
$$\sqrt{x} = \frac{3y+1}{1-y} \Leftrightarrow x = \left(\frac{3y+1}{1-y}\right)^2 \ge 0$$

Donc : il existe un
$$x \in \mathbb{R}^+$$
 tel que : $f(x) = y$

Donc:
$$y \in \left[-\frac{1}{3}; 1 \right] \Rightarrow y \in f(\mathbb{R}^+)$$

Donc:
$$\left[-\frac{1}{3};1\right] \subset f\left(\mathbb{R}^+\right)$$
 par suite: $f\left(\mathbb{R}^+\right) = \left[-\frac{1}{3};1\right]$

3) Soit
$$y \in \left[-\frac{1}{3}; 1\right[$$
 : Résolvons l'équation : $f(x) = y$

La même démarche donne :
$$f(x) = y \Leftrightarrow x = \left(\frac{3y+1}{1-y}\right)^2 \ge 0$$

Donc:
$$\forall y \in \left[-\frac{1}{3}; 1 \right[; \exists ! x \in \mathbb{R}^+ / f(x) = y \right]$$

Conclusion : f est une bijection de
$$\mathbb{R}^+$$
 dans $\left[-\frac{1}{3};1\right[$

$$f(x) = y \Leftrightarrow x = f^{-1}(y) = \left(\frac{3y+1}{1-y}\right)^{2} \quad \text{et} \quad f^{-1} : \left[-\frac{1}{3}; 1\right] \to \mathbb{R}^{+}$$
$$x \mapsto \left(\frac{3x+1}{1-x}\right)^{2}$$

Exercice17: Soit les applications suivantes :

$$f: \frac{\mathbb{R} \to \mathbb{R}}{x \mapsto \sin(x)} \qquad g: \frac{\mathbb{N}^2 \to \mathbb{N}}{(n;p) \mapsto n+p} \qquad h: \frac{\mathbb{R}^2 \to \mathbb{R}^2}{(x;y) \mapsto (x+3y; x-y)}$$

- 1) a) f est-elle injective?
- b) f est-elle surjective?
- 2) Montrer que g est surjective
- 3) Déterminer : $g(\mathbb{N}^2)$
- 4) Déterminer : $g^{-1}(\{2\})$
- 5) g est-elle injective?
- 6) Montrer que h est bijective
- 7) Déterminer : h^{-1}
- 8) Déterminer : $h(\mathbb{R}^2)$ et $h^{-1}(\mathbb{R}^2)$

Solution : 1) a) On a : $f(0) = \sin 0 = 0$ et $f(\pi) = \sin \pi = 0$

Donc: $\exists 0 \in \mathbb{R}$; $\exists \pi \in \mathbb{R}$: $f(0) = f(\pi)$ Mais $0 \neq \pi$

Donc: f n'est pas injective

- b) Si je trouve : $y \in \mathbb{R}$ qui n'a pas d'antécédent dans \mathbb{R} on peut affirmer que f n'est pas surjective.
- Si je prends : y = 2 II n'existe pas : $x \in \mathbb{R}$ tel que : $\sin x = 2$

C'est-à-dire : 2 n'a pas d'antécédents

Donc: f n'est pas surjective.

2) g: $\mathbb{N}^2 \to \mathbb{N}$ Montrons que g est surjective.

g est surjective si et seulement si tout élément de $\,\mathbb{N}\,$ admet au moins un antécédent dans $\,\mathbb{N}\times\mathbb{N}\,$

C'est-à-dire : $\forall p \in \mathbb{N}$; $\exists (n;m) \in \mathbb{N} \times \mathbb{N}$

Tel que : g(n;m) = p c'est-à-dire : n+m=p

Soit : $p \in \mathbb{N}$

Si: p = 0 alors: 0 + 0 = 0 = p

Donc: $\exists (0;0) \in \mathbb{N} \times \mathbb{N}$ tel que: 0+0=p

Si: $p \neq 0$ alors: $p \geq 1$ Alors: $\underbrace{(p-1)}_{p} + \underbrace{1}_{m} = p$

Il suffit de prendre : n = p - 1 car : m = 1

Donc: $\exists (n = p - 1; m = 1) \in \mathbb{N} \times \mathbb{N}$ tel que: n + m = p

C'est-à-dire : $\forall p \in \mathbb{N}$; $\exists (n;m) \in \mathbb{N} \times \mathbb{N}$; tel que : g(n;m) = p

Donc: g est surjective.

3) Déterminons : $g(\mathbb{N}^2)$

Puisque : g est surjective alors : $g(\mathbb{N}^2) = \mathbb{N}$

4) Déterminons : $g^{-1}(\{2\})$

$$(n;m) \in g^{-1}(\{2\}) \Leftrightarrow (n;m) \in \mathbb{N} \times \mathbb{N} \text{ et } g(n;m) = 2$$

 $\Leftrightarrow (n;m) \in \mathbb{N} \times \mathbb{N} \text{ et } n+m=2$

$$\Leftrightarrow (n;m) \in \{(0;2);(2;0);(1;1)\}$$

Donc:
$$g^{-1}(\{2\}) = \{(0,2),(2,0),(1,1)\}$$

5)
$$g: \stackrel{\mathbb{N}^2 \to \mathbb{N}}{(n;p) \mapsto n+p}$$

On a:
$$g(0;2) = g(1;1) = 2$$
 et $(0;2) \neq (1;1)$

Donc: g n'est pas injective.

6)
$$h: \frac{\mathbb{R}^2 \to \mathbb{R}^2}{(x;y) \mapsto (x+3y; x-y)}$$
 Montrons que h est bijective:

Soit:
$$(z;t) \in \mathbb{R}^2$$
; $\exists ?!(x;y) \in \mathbb{R}^2$ tel que: $h(x;y) = (z;t)$??

$$h(x;y) = (z;t) \Leftrightarrow (x+3y;x-y) = (z;t)$$

$$\Leftrightarrow \begin{cases} x+3y = z \\ x-y=t \end{cases} \Leftrightarrow \begin{cases} 4y = z-t \\ x-y = t \end{cases} \Leftrightarrow \begin{cases} y = \frac{z-t}{4} \\ x = y+t = \frac{z-t}{4}+t \end{cases} \Leftrightarrow \begin{cases} x = \frac{z+3t}{4} \in \mathbb{R} \\ y = \frac{z-t}{4} \in \mathbb{R} \end{cases}$$

$$\forall (z;t) \in \mathbb{R}^2$$
; $\exists ! (x;y) \in \mathbb{R}^2$ Tel que: $h(x;y) = (z;t)$

Donc: h bijective

7) Déterminons h^{-1} la bijection réciproque de f

f est injective et surjective donc bijective

$$h(x;y) = (z;t) \Leftrightarrow (x;y) = h^{-1}(z;t) = \left(\frac{z+3t}{4};\frac{z-t}{4}\right)$$

Donc:
$$h^{-1}$$
:
$$(x; y) \mapsto \left(\frac{x+3y}{4}; \frac{x-y}{4}\right)$$

8) Déterminons :
$$h(\mathbb{R}^2)$$
 et $h^{-1}(\mathbb{R}^2)$

Puisque :
$$h$$
 et h^{-1} sont surjectives alors : $h(\mathbb{R}^2) = \mathbb{R}^2$ et $h^{-1}(\mathbb{R}^2) = \mathbb{R}^2$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

