http://www.xriadiat.com/

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Correction Série N°3: ENSEMBLES ET APPLICATIONS

Exercice1: Ecrire en extension les ensembles suivants:

$$E_1 = \{ x \in \mathbb{Z} / k^2 \le 7 \}$$

$$E_2 = \{k \in \mathbb{Z} / 7 \le k^2 \le 35\}$$

$$E_3 = \{(x, y) \in \mathbb{N}^2 / (x + y)(x - y) = 32\}$$

$$E_4 = \{(x; y) \in \mathbb{Z}^2 / 0 \prec 2xy \le 7\}$$

$$E_5 = \left\{ x \in \mathbb{Z}^* / \left(\forall n \in \mathbb{N} \right) \frac{1}{x} \ge \frac{n}{n+1} \right\}$$

Solution: $k \in E_1 \iff k \in \mathbb{Z}$ et $k^2 \le 7$

$$\Leftrightarrow$$
 $|k| \le \sqrt{7} \Leftrightarrow -\sqrt{7} \le k \le \sqrt{7}$ et $k \in \mathbb{Z}$

Donc:
$$E_1 = \{-2; -1; 0; 1; 2\}$$

$$E_2 = \{-5, -4, -3, 3, 4, 5\}$$

$$E_3 = \{(x, y) \in \mathbb{N}^2 / (x + y)(x - y) = 32\}$$
?

Et
$$(x-y)+(x+y)=2x$$
 est u nombre pair

Donc x-y et x+y ont la même parité et $x+y \ge x-y$ $32 = 2^5$

On dresse un tableau:

x-y	2	4
x+y	16	8
x	9	6
у	7	2

$$E_3 = \{(6;2);(9;7)\}$$

$$E_4 = \{(x, y) \in \mathbb{Z}^2 / 0 \prec 2xy \le 7\}$$
 ?

Soit : $(x;y) \in E_4$ donc : $0 < 2xy \le 7$ donc : 2xy est u nombre relatif pair inferieur a 7

Donc:
$$(x,y) \in E_4 \Leftrightarrow 2xy = 2 \text{ ou } 2xy = 4 \text{ ou } 2xy = 6$$

$$(x,y) \in E_4 \Leftrightarrow xy = 1 \text{ ou } xy = 2 \text{ ou } xy = 3$$

Donc:
$$E_4 = \{(-1;-1);(1;1);(1;2);(-1;-2);(2;1);(-2;-1);$$

$$(1;3);(-1;-3);(3;1);(-3;-1)$$

$$E_5 = \left\{ x \in \mathbb{Z}^* / \left(\forall n \in \mathbb{N} \right) \frac{1}{x} \ge \frac{n}{n+1} \right\} ?$$

Soit:
$$x \in E_5$$
 donc: $x \in \mathbb{Z}^*$ et $(\forall n \in \mathbb{N}) \frac{1}{r} \ge \frac{n}{n+1}$

Alors
$$x \in \mathbb{N}^*$$
 et $(\forall n \in \mathbb{N}^*) \frac{1}{r} \ge \frac{n}{n+1} \Rightarrow (\forall n \in \mathbb{N}^*) x \le \frac{n+1}{n} = 1 + \frac{1}{n} < 2 \Rightarrow x < 2$

Alors
$$E_5 \subset \{1\}$$

Inversement: $\{1\} \subset E_5$ car: $1 \in E_5$

En effet :
$$1 \in \mathbb{Z}^* / (\forall n \in \mathbb{N}); \frac{1}{1} = 1 \ge \frac{n}{n+1}$$

Conclusion : $E_5 = \{1\}$

Exercice2:
$$A = \left\{ x \in \mathbb{R} / \left| 1 - \frac{x}{2} \right| \prec 1 \right\} \text{ et } B = \left] 0; 4 \right[$$

Montrons que : A = B

Solution : Conseils méthodologiques : Pour montrer que A = B, on montre que :

a)
$$A \subset B$$
 et que $B \subset A$.

b) ou bien on montre que : $x \in A \Leftrightarrow x \in B$

Soit $x \in \mathbb{R}$

$$x \in A \Leftrightarrow x \in \mathbb{R} \text{ et } \left| 1 - \frac{x}{2} \right| < 1 \Leftrightarrow x \in \mathbb{R} \text{ et } -1 < 1 - \frac{x}{2} < 1$$

$$\Leftrightarrow x \in \mathbb{R} \text{ et } -2 \prec -\frac{x}{2} \prec 0 \Leftrightarrow x \in \mathbb{R} \text{ et } 0 \prec x \prec 4 \Leftrightarrow x \in B =]0;4[$$

Donc on a : $x \in A \Leftrightarrow x \in B$

Donc: A = B

Exercice3:
$$A = \{x \in \mathbb{R} / |x+1| > 3\}$$
 et $B = \{x \in \mathbb{R} / x^2 + 2x > 15\}$

1)Ecrire en compréhension les ensembles : \overline{A} et \overline{B}

2) Comparer : \overline{A} et \overline{B}

Solution :1)
$$x \in \overline{A} \Leftrightarrow x \notin A \Leftrightarrow |x+1| \le 3 \Leftrightarrow -3 \le x+1 \le 3 \Leftrightarrow -4 \le x \le 2$$

Donc on a : $x \in \overline{A} \Leftrightarrow x \in [-4,2]$

Donc: $\overline{A} = [-4; 2]$

$$x \in \overline{B} \iff x \notin B \iff x^2 + 2x \le 15 \iff x^2 + 2x - 15 \le 0$$

$$\Delta = 64 > 0$$
 et $x_1 = -5$ et $x_2 = 3$

Donc on a :
$$x \in \overline{B} \Leftrightarrow x \in [-5;3]$$

Donc: $\overline{B} = [-5;3]$

2)On a :
$$\overline{A} = [-4, 2]$$
 et $\overline{B} = [-5, 3]$

Donc: $\overline{A} \subset \overline{B}$

Exercice4: Soit l'ensemble suivant :
$$A = \left\{ \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m} / n \in \mathbb{N}^* \text{ et } m \in \mathbb{N}^* \right\}$$

1) Montrer que :
$$0 \notin A$$
 et $\frac{1}{2} \in A$

2) Montrer que :
$$A \subset]0;1]$$

3) Est-ce que
$$A = [0;1]$$
?

Solution :1) a) Montrons que :
$$0 \notin A$$

Supposons par l'absurde que :
$$0 \in A$$

$$0 \in A \Longrightarrow \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / 0 = \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m}$$

$$0 = \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m} \Leftrightarrow \frac{1}{n} + \frac{1}{m} = \frac{1}{n \times m} \Leftrightarrow \frac{n + m}{n \times m} = \frac{1}{n \times m}$$

$$\Leftrightarrow n+m=1 \text{ et } n \in \mathbb{N}^* \text{ et } \exists m \in \mathbb{N}^*$$

$$\Leftrightarrow n + (m-1) = 0 \text{ et } n \in \mathbb{N}^* \text{ et } \exists m \in \mathbb{N}^*$$

$$\Leftrightarrow n=0 \ et \ m-1=0 \ car \ n \in \mathbb{N}^* \ et \ m-1 \in \mathbb{N}$$

Contradiction :
$$n \in \mathbb{N}^*$$
 et $n = 0$

Donc:
$$0 \notin A$$

b) Montrons que :
$$\frac{1}{2} \in A$$

$$\frac{1}{2} \in A \iff \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / \frac{1}{2} = \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m}$$

$$\Leftrightarrow \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / \frac{1}{2} = \frac{m+n-1}{n \times m}$$

$$\Leftrightarrow \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / n \times m = 2m + 2n - 2$$

$$\Leftrightarrow \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / n \times m - 2m - 2n + 2 = 0$$

$$\Leftrightarrow \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / m(n-2) - 2(n-2) - 4 + 2 = 0$$

$$\Leftrightarrow \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / (n-2)(m-2) = 2 \ Vraie$$

Il suffit de prendre :
$$n-2=1$$
 et $m-2=2$

C'est-à-dire : Il suffit de prendre :
$$n = 3$$
 et $m = 4$

On peut vérifier que :
$$\frac{1}{2} = \frac{1}{3} + \frac{1}{4} - \frac{1}{3 \times 4}$$
 car : $\frac{1}{3} + \frac{1}{4} - \frac{1}{3 \times 4} = \frac{7}{12} - \frac{1}{12} = \frac{6}{12} = \frac{1}{2}$

Par suite :
$$\frac{1}{2} \in A$$

2) Montrons que :
$$A \subset [0;1]$$

Soit:
$$r \in A$$
 Montrons que: $r \in [0;1]$?

$$r \in A \Leftrightarrow \exists n \in \mathbb{N}^* \ et \ \exists m \in \mathbb{N}^* / r = \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m}$$

On va raisonner par équivalence :
$$0 < \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m} \le 1 \Leftrightarrow 0 < \frac{m+n-1}{n \times m} \le 1$$

$$\Leftrightarrow 0 \times n \times m \prec m + n - 1 \le 1 \times n \times m$$

$$\Leftrightarrow 0 \prec m+n-1 \leq n \times m \Leftrightarrow 0 \prec m+n-1 \text{ et } m+n-1 \leq n \times m$$

$$\Leftrightarrow 0 \prec m+n-1 \ et \ m+n-n \times m-1 \leq 0$$

$$\Leftrightarrow 0 \prec m+n-1 \ et \ m(1-n)+(n-1) \leq 0$$

$$\Leftrightarrow 0 \prec m+n-1 \ et \ (n-1)(1-m) \leq 0$$

Or on a :
$$n \in \mathbb{N}^*$$
 donc : $n \ge 1$ et $m \in \mathbb{N}^*$ donc : $m \ge 1$

Donc:
$$n+m-1 \ge 2-1 \ge 0$$

Et On a :
$$n \ge 1$$
 et $m \ge 1$ donc : $n-1 \ge 0$ et $m-1 \ge 0$

Par suite :
$$(n-1)(1-m) \le 0$$

Alors:
$$0 \prec m+n-1$$
 et $(n-1)(1-m) \leq 0$ vraie

Par suite :
$$0 < \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m} \le 1$$
 vraie

Conclusion :
$$A \subset [0,1]$$

3) Est-ce que
$$A = [0;1]$$
?

On remarque que :
$$A = \left\{ \frac{1}{n} + \frac{1}{m} - \frac{1}{n \times m} / n \in \mathbb{N}^* \text{ et } m \in \mathbb{N}^* \right\} \subset \mathbb{Q}$$

On a :
$$\frac{\sqrt{2}}{2} \in \left]0;1\right]$$
 mais $\frac{\sqrt{2}}{2} \notin \mathbb{Q}$ donc : $\frac{\sqrt{2}}{2} \notin A$

Conclusion : $A \neq [0;1]$

Exercice5: Soient les ensembles : $A = \{1, 2, 3\}$ et $B = \{0, 1, 2, 3\}$

Décrire les ensembles : $A \cap B$; $A \cup B$ et A - B et $A \times B$

Solution:
$$A \cap B = \{x \mid x \in A \ et \ x \in B\} = \{1, 2, 3\}$$

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\} = \{0;1;2;3\}$$

Remarque : Comme $A \subset B$ on a $A \cap B = A$ et $A \cup B = B$

$$B - A = \{x \mid x \in B \text{ et } x \notin A\} = \{0\}$$

$$A \times B = \{(1,0), (1,1), (1,2), (1,3), (2,0), (2,1), (2,2), (2,3), (3,0), (3,1), (3,2), (3,3)\}$$

Exercice6:1) Déterminer le complémentaire dans \mathbb{R} des parties suivantes :

$$A =]-\infty, 2]$$
; $B =]-1, +\infty[$; $C = [2, 3[$

2) Soient :
$$E =]-\infty,1] \cup]2;+\infty[$$
 ; $F =]-\infty,1]$; $G =]2;+\infty[$

Comparer les ensembles suivants : $C^{\scriptscriptstyle E}_{\scriptscriptstyle
m R}$ et $C^{\scriptscriptstyle F}_{\scriptscriptstyle
m R}\cap C^{\scriptscriptstyle G}_{\scriptscriptstyle
m R}$

Solution: 1)
$$C_{\mathbb{R}}^A = C_{\mathbb{R}}^{]-\infty,2]} = [2,+\infty[$$

$$C_{\mathbb{R}}^{B}=C_{\mathbb{R}}^{]-1,+\infty[}=\left]-\infty,-1\right]$$

$$C_{\mathbb{R}}^{C} = C_{\mathbb{R}}^{]2,3]} =]-\infty,2] \cup]3,+\infty[$$

2)
$$C_{\mathbb{R}}^{]-\infty,1]\cup]2;+\infty[}=[1,2]$$

$$C_{\mathbb{R}}^{F} \cap C_{\mathbb{R}}^{G} = C_{\mathbb{R}}^{]-\infty,1]} \cap C_{\mathbb{R}}^{]2;+\infty[} =]1,+\infty[\cap]-\infty,2]$$

$$C_{\mathbb{R}}^{F} \cap C_{\mathbb{R}}^{G} = [1,2]$$

$$C_{\mathbb{R}}^F \cap C_{\mathbb{R}}^G =]1,2]$$

Donc:
$$C^F_{\mathbb{R}} \cap C^G_{\mathbb{R}} = C^E_{\mathbb{R}}$$

$$\text{Remarque}: \ C^{E \cup F}_{\mathbb{R}} = C^{E}_{\mathbb{R}} \cap C^{F}_{\mathbb{R}} \quad et \quad C^{E \cap F}_{\mathbb{R}} = C^{E}_{\mathbb{R}} \cup C^{F}_{\mathbb{R}}$$

Exercice7: Soient A; B et C des parties d'un ensemble non vide E

Monter que :
$$\begin{cases} A \cap C \subset B \cap C \\ A - C \subset B - C \end{cases} \Leftrightarrow A \subset B$$

Solution:
$$\Rightarrow$$
) On suppose que :
$$\begin{cases} A \cap C \subset B \cap C \\ A - C \subset B - C \end{cases}$$

Montrons que $A \subset B$???

Conseils méthodologiques :

Pour montrer que $A \subset B$, on montre que : $x \in A \Rightarrow x \in B$

Soit:
$$x \in A \Rightarrow x \in A - C$$
 ou $x \in A \cap C$

Car:
$$A = (A - C) \cup (A \cap C)$$

$$\Rightarrow x \in B - C$$
 ou $x \in B \cap C$

$$\Rightarrow x \in B$$
 ou $x \in B$

$$\Rightarrow x \in B$$

Donc:
$$A \subset B$$

Par suite :
$$\begin{cases} A \cap C \subset B \cap C \\ A - C \subset B - C \end{cases} \Rightarrow A \subset B$$

 \leftarrow) On suppose que : $A \subset B$ **et** Montrons que : $\begin{cases} A \cap C \subset B \cap C \\ A - C \subset B - C \end{cases}$???

a) Montrons que : $A \cap C \subset B \cap C$

Soit: $x \in A \cap C \implies x \in A \text{ et } x \in C$

$$\Rightarrow x \in B \ et \ x \in C$$

$$\Rightarrow x \in B \cap C$$

Donc: $A \cap C \subset B \cap C$

b) Montrons que : $A-C \subset B-C$

Soit: $x \in A - C \implies x \in A \text{ et } x \notin C \implies x \in B \text{ et } x \notin C$

$$\Rightarrow x \in B - C$$

Donc: $A-C \subset B-C$

En déduit donc que : $A \subset B \Rightarrow \begin{cases} A \cap C \subset B \cap C \\ A - C \subset B - C \end{cases}$

Conclusion : $A \subset B \Leftrightarrow \begin{cases} A \cap C \subset B \cap C \\ A - C \subset B - C \end{cases}$

Exercice8:

On rappelle que pour toutes parties U et V d'un ensemble E, on note : $U\Delta V = (U \setminus V) \cup (V \setminus U)$

1) Montrer que pour toutes parties : A ; B ; C d'un ensemble E

a)
$$(A \cup B) \cap (\overline{A \cup C}) = \overline{A} \cap B \cap \overline{C}$$

b)
$$(A \cup C) \cap (\overline{A \cup B}) = \overline{A} \cap C \cap \overline{B}$$

2) En déduire que : $(A \cup B)\Delta(A \cup C) = \overline{A} \cap (B\Delta C)$

3) Montrer que : $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$

Solution :1) a) $(A \cup B) \cap (\overline{A \cup C}) = (A \cup B) \cap (\overline{A} \cap \overline{C}) = (A \cap (\overline{A} \cap \overline{C})) \cup (B \cap (\overline{A} \cap \overline{C}))$

$$= \left(A \cap \overline{A} \cap \overline{C}\right) \cup \left(B \cap \overline{A} \cap \overline{C}\right) = \emptyset \cup \left(B \cap \overline{A} \cap \overline{C}\right) = B \cap \overline{A} \cap \overline{C} = \overline{A} \cap B \cap \overline{C}$$

b) Pour Cette égalité il suffit d'intervertir les rôles de B et C.

2)
$$(A \cup B) \Delta (A \cup C) = ((A \cup B) \setminus (A \cup C)) \cup ((A \cup C) \setminus (A \cup B))$$

$$= \left(\overline{A} \cap B \cap \overline{C}\right) \cup \left(\overline{A} \cap C \cap \overline{B}\right) = \overline{A} \cap \left(\left(B \cap \overline{C}\right)\right) \cup \left(C \cap \overline{B}\right)$$

$$=\overline{A}\cap((B\setminus C)\cup(C\setminus B))=\overline{A}\cap(B\Delta C)$$

3) Montrons que : $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$

$$A \cap (B \Delta C) = A \cap ((B - C) \cup (C - B)) = A \cap ((B \cap \overline{C}) \cup (C \cap \overline{B}))$$

$$= (A \cap (B \cap \overline{C})) \cup (A \cap (C \cap \overline{B})) = (A \cap B \cap \overline{C}) \cup (A \cap C \cap \overline{B}) \bigcirc$$

$$(A \cap B)\Delta(A \cap C) = ((A \cap B) - (A \cap C)) \cup ((A \cap C) - (A \cap B))$$

$$= \left((A \cap B) \cap \left(\overline{A \cap C} \right) \right) \cup \left((A \cap C) \cap \left(\overline{A \cap B} \right) \right) = \left((A \cap B) \cap \left(\overline{A} \cup \overline{C} \right) \right) \cup \left((A \cap C) \cap \left(\overline{A} \cup \overline{B} \right) \right)$$

$$= \left(\left(A \cap B \cap \overline{A} \right) \cup \left(A \cap B \cap \overline{C} \right) \right) \cup \left(\left(A \cap C \cap \overline{A} \right) \cup \left(A \cap C \cap \overline{B} \right) \right)$$

$$= \left(\varnothing \cup \left(A \cap B \cap \overline{C} \right) \right) \cup \left(\varnothing \cup \left(A \cap C \cap \overline{B} \right) \right) = \left(A \cap B \cap \overline{C} \right) \cup \left(A \cap C \cap \overline{B} \right) \bigcirc 2$$

(1) et (2) affirment que : $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$

Exercice9 : Soient A ; B ; C des parties d'un ensemble E .

Monter que : $A = B \Leftrightarrow A \cap B = A \cup B$

Solution : Démontrons la double implication.

 \Rightarrow) Evident. Car : si A = B

Alors: $A \cap A = A \cup A = A$

 \Leftarrow) On suppose que : $A \cap B = A \cup B$

et on montre que : A = B

✓ Soit $x \in A$ montrons que $x \in B$?

 $x \in A \Rightarrow x \in A \cup B \Rightarrow x \in A \cap B$

C'est-à-dire : $x \in B$: Ceci signifie que : $A \subset B(1)$

✓ Soit $x \in B$ montrons que $x \in A$?

 $x \in B \Rightarrow x \in A \cup B \Rightarrow x \in A \cap B$

C'est-à-dire : $x \in A$: Ceci signifie que : $B \subset A(2)$

D'après (1) et (2)on en déduit que : A = B

Conclusion: $A = B \Leftrightarrow A \cap B = A \cup B$

Exercice10: 1) E = {1, 2, 3}. Déterminer P(E)

2) Soient a, b, c, d des éléments distincts.

Ecrire P ({a, b, c, d}). Combien y a-t-il d'éléments?

3)Essayer de deviner une formule donnant le nombre de parties d'un ensemble qui a n éléments.

Solution :1) $P(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$. Ne pas oublier la partie vide, ni la partie pleine.

L'ensemble E a trois éléments, l'ensemble P(E) a : 8 éléments.

2) Dans P({a, b, c, d}), on a : Une partie à zéro élément, Ø

Quatre parties à un élément, {a}, {b}, {c}, {d},

Quatre parties à trois éléments

Six parties à deux éléments

Une partie à quatre éléments.

Nombre de parties : 1 + 4 + 4 + 6 + 1 = 16.

Un ensemble à n éléments a 2ⁿ parties : on le vérifie par récurrence

Exercice11: Soient E et F deux ensembles et A et B deux parties respectives de E et F

- 1) Déterminer le complémentaire de $A \times F$ dans $E \times F$
- 2) Déterminer le complémentaire de $E \times F$ dans $E \times F$
- 3) Déterminer le complémentaire de $A \times B$ dans $E \times F$
- 4) Monter que : $A \times B = \emptyset \Leftrightarrow A = \emptyset$ ou $B = \emptyset$

Solution : 1) le complémentaire de $A \times B$ dans $E \times F$

Se note : $C_{E \times F}^{A \times B}$ ou $\overline{A \times B}$

$$(x;y) \in \overline{A \times F} \Leftrightarrow (x;y) \notin A \times F \Leftrightarrow x \notin A \text{ ou } y \notin F$$

$$\Leftrightarrow x \in \overline{A} \text{ ou } y \in \overline{F} \Leftrightarrow (x; y) \in \overline{A} \times F \text{ ou } y \notin F$$

$$\Leftrightarrow$$
 $(x;y) \in \overline{A} \times F$ ou $y \in \emptyset$ Car: $y \notin F$ donne l'ensemble vide

Donc: $\overline{A \times F} = \overline{A} \times F$

$$2)(x;y) \in \overline{E \times B} \Leftrightarrow (x;y) \notin E \times B \Leftrightarrow x \notin Eouy \notin B$$

$$\Leftrightarrow x \in \overline{E}ouy \in \overline{B} \Leftrightarrow (x;y) \in E \times \overline{B} \text{ ou } x \notin E$$

$$\Leftrightarrow$$
 $(x; y) \in E \times \overline{B}$ Car : $x \notin E$ donne l'ensemble vide

Donc: $\overline{E \times B} = E \times \overline{B}$

3)
$$(x; y) \in \overline{A \times B} \Leftrightarrow (x; y) \notin A \times B \Leftrightarrow x \notin Aouy \notin B$$

$$\Leftrightarrow x \in \overline{A}ouy \in \overline{B} \Leftrightarrow (x; y) \in \overline{A} \times F \text{ ou } (x; y) \in E \times \overline{B}$$

$$\Leftrightarrow$$
 $(x; y) \in (\overline{A} \times F) \cup (E \times \overline{B})$

Donc:
$$\overline{A \times B} = (\overline{A} \times F) \cup (E \times \overline{B})$$

4) Monter que :
$$A \times B = \emptyset \Leftrightarrow A = \emptyset$$
 ou $B = \emptyset$

a) Montrons que :
$$A \times B = \emptyset \Rightarrow A = \emptyset$$
 ou $B = \emptyset$

Supp :
$$A \times B = \emptyset$$
 et Montrons que : $A = \emptyset$ ou $B = \emptyset$

Supp que :
$$A \neq \emptyset$$
 et $B \neq \emptyset$

Donc:
$$\exists x \in A \text{ et } \exists y \in B$$

Donc:
$$\exists (x; y) \in A \times B$$

Donc:
$$A \times B \neq \emptyset$$
 absurde car $A \times B = \emptyset$

Donc:
$$A \times B = \emptyset \Rightarrow A = \emptyset$$
 ou $B = \emptyset$

b) Montrons que :
$$A = \emptyset$$
 ou $B = \emptyset \Rightarrow A \times B = \emptyset$

Supp:
$$A = \emptyset$$
 ou $B = \emptyset$ et Montrons que : $A \times B = \emptyset$

Supp que :
$$A \times B \neq \emptyset$$

Donc:
$$\exists (x; y) \in A \times B$$

Donc:
$$\exists x \in A \text{ et } \exists y \in B$$

Donc:
$$A \neq \emptyset$$
 et $B \neq \emptyset$ absurde car: $A = \emptyset$ ou $B = \emptyset$

Donc:
$$A = \emptyset$$
 ou $B = \emptyset \Rightarrow A \times B = \emptyset$

Conclusion :
$$A \times B = \emptyset \Leftrightarrow A = \emptyset$$
 ou $B = \emptyset$

$$f: [1; +\infty[\rightarrow [2; +\infty]]$$

Exercice12: Soit l'application:

$$x \mapsto x + \frac{1}{x}$$

1) Calculer:
$$f(1)$$
 et $f(2)$

2) Montrer que
$$f$$
 est injective

3) Montrer que
$$f$$
 est surjective

4) Montrer que
$$f$$
 est bijective et Déterminer f^{-1} la bijection réciproque de f .

Solution : 1)
$$f(x) = x + \frac{1}{x}$$

$$f(1) = 1 + \frac{1}{1} = 2$$
 et $f(2) = 1 + \frac{1}{2} = \frac{3}{2}$

2) Soient
$$x_1 \in [1; +\infty[$$
 et $x_2 \in [1; +\infty[$

$$f(x_1) = f(x_2) \Rightarrow x_1 + \frac{1}{x_1} = x_2 + \frac{1}{x_2}$$

$$\Rightarrow \frac{x_1^2 + 1}{x_2} = \frac{x_2^2 + 1}{x_2} \Rightarrow x_2(x_1^2 + 1) = x_1(x_2^2 + 1)$$

$$\Rightarrow x_{2}x_{1}^{2} + x_{2} = x_{1}x_{2}^{2} + x_{1} \Rightarrow x_{2}x_{1}^{2} - x_{1}x_{2}^{2} + x_{2} - x_{1} = 0$$

$$\Rightarrow x_2 x_1 (x_1 - x_2) - (x_1 - x_2) = 0 \Rightarrow (x_1 - x_2) (x_2 x_1 - 1) = 0$$

$$\Rightarrow x_1 - x_2 = 0$$
 ou $x_2 x_1 - 1 = 0 \Rightarrow x_1 = x_2$ ou $x_2 x_1 = 1 \Rightarrow x_1 = x_2$ ou $x_1 = \frac{1}{x_2}$

$$si: x_1 = \frac{1}{x_2} \text{ Comme } : x_2 \in [1; +\infty[\implies x_1 = \frac{1}{x_2} \le 1]$$

Et puisque :
$$x_1 \ge 1$$
 Alors : $x_1 = 1$

Et par suite
$$x_2 = 1$$
 et donc : $x_1 = x_2$

Dans tous les cas : $x_1 = x_2$

Donc f est injective

3) Montrons que f est surjective

Soit
$$y \in [2; +\infty[$$

Résolvons l'équation : f(x) = y

$$f(x) = y \Leftrightarrow x + \frac{1}{x} = y \Leftrightarrow \frac{x^2 + 1}{x} = y \Leftrightarrow x^2 - xy + 1 = 0$$

$$\Delta = y^2 - 4 \ge 0 \text{ car } y \ge 2$$

Donc: au moins 2 solutions:
$$x = \frac{y + \sqrt{y^2 - 4}}{2}$$
 et $x = \frac{y - \sqrt{y^2 - 4}}{2}$

Puisque l'équation f(x) = y admet au moins une solution dans \mathbb{R} $(\forall y \in \mathbb{R})$

C'est-à-dire :
$$\forall y \in [2; +\infty[; \exists x \in \mathbb{R} / f(x) = y]$$

Conclusion: f est surjective

4) Puisque f est injective et surjective alors f est bijective

Soit
$$y \in [2; +\infty[$$
; $f(x) = y \Leftrightarrow x^2 - xy + 1 = 0$

$$x_1 = \frac{y + \sqrt{y^2 - 4}}{2}$$
 et $x_2 = \frac{y - \sqrt{y^2 - 4}}{2}$

On a:
$$x_2 - 1 = \frac{y - \sqrt{y^2 - 4}}{2} - 1 = \frac{y - 2 - \sqrt{y^2 - 4}}{2} = \frac{y - 2 - \sqrt{(y - 2)(y + 2)}}{2}$$

Comme:
$$y-2 \le y+2 \otimes y-2$$

Alors:
$$(y-2)(y-2) \le (y+2)(y-2)$$

Alors:
$$(y-2)^2 \le (y+2)(y-2)$$

Alors:
$$\sqrt{(y-2)^2} \le \sqrt{(y+2)(y-2)}$$

Alors:
$$|y-2| \le \sqrt{(y+2)(y-2)}$$

Alors:
$$y-2 \le \sqrt{(y+2)(y-2)}$$
 car $y \in [2; +\infty[$

Et donc:
$$x_2 - 1 \le 0$$
 donc: $x_2 = \frac{y - \sqrt{y^2 - 4}}{2} \notin y \in [1; +\infty[$

Alors:
$$x = \frac{y + \sqrt{y^2 - 4}}{2}$$

$$f^{-1}:[2;+\infty[\rightarrow[1;+\infty[$$

Donc:
$$x \mapsto \frac{x + \sqrt{x^2 - 4}}{2}$$

$$: \mathbb{R} \to \mathbb{R}$$

Exercice13: Soit l'application
$$f: x \mapsto \frac{x(1-x)^2}{(1+x^2)^2}$$

1) a) Montrer que :
$$\forall x \in \mathbb{R}^* \ f\left(\frac{1}{x}\right) = f(x)$$

2) a) Montrer que :
$$\forall x \in \mathbb{R}^*$$
 : $f(x) \le \frac{1}{4}$

- b) f est-elle surjective ? justifier
- 3) f est-elle bijective?

Solution: 1) a) Montrons que : $\forall x \in \mathbb{R}^* \ f\left(\frac{1}{x}\right) = f(x)$

Soit $x \in \mathbb{R}^*$:

$$f\left(\frac{1}{x}\right) = \frac{\left(\frac{1}{x}\right)\left(1 - \frac{1}{x}\right)^2}{\left(1 + \left(\frac{1}{x}\right)^2\right)^2} = \frac{\frac{1}{x}\frac{\left(x - 1\right)^2}{x^2}}{\left(\frac{x^2 + 1}{x^2}\right)^2} = \frac{1}{x}\frac{\left(x - 1\right)^2}{x^2}\left(\frac{x^2}{x^2 + 1}\right)^2$$

$$f\left(\frac{1}{x}\right) = \frac{(1-x)^2}{x^2+1} \left(\frac{x^2}{x^2+1}\right)^2 = \frac{x(1-x)^2}{(x^2+1)^2} = f(x)$$

Donc: $\forall x \in \mathbb{R}^* \ f\left(\frac{1}{x}\right) = f(x)$

b) Si je trouve : $x \neq y$ et f(x) = f(y) on peut affirmer que f n'est pas injective.

On a: $\forall x \in \mathbb{R}^* f\left(\frac{1}{x}\right) = f(x)$

Si je prends : x = 2

On a: $f(2) = f\left(\frac{1}{2}\right)$ mais $2 \neq \frac{1}{2}$

Donc : f n'est pas injective

2) a) Montrons que : $\forall x \in \mathbb{R}^*$: $f(x) \le \frac{1}{4}$

$$\frac{1}{4} - f(x) = \frac{1}{4} - \frac{x(1-x)^2}{(1+x^2)^2} = \frac{(1+x^2)^2 - 4x(1-x)^2}{4(1+x^2)^2} = \frac{x^4 + 2x^2 + 1 - 4x(x^2 - 2x + 1)}{4(1+x^2)^2} = \frac{x^4 - 4x^3 + 8x^2 - 4x + 2x^2 + 1}{4(1+x^2)^2}$$

$$=\frac{x^4-4x^3+10x^2-4x+1}{4(1+x^2)^2}$$

$$= \frac{x^2 \left(x^2 - 4x + 10 - \frac{4}{x} + \frac{1}{x^2}\right)}{4(1+x^2)^2} = \frac{x^2 \left(x^2 + \frac{1}{x^2} - 4\left(x + \frac{1}{x}\right) + 10\right)}{4(1+x^2)^2}$$

$$= \frac{x^2 \left(\left(x + \frac{1}{x} \right)^2 - 2 \times 2 \left(x + \frac{1}{x} \right) + 8 \right)}{4 \left(1 + x^2 \right)^2} = \frac{x^2 \left(\left(x + \frac{1}{x} \right)^2 - 2 \times 2 \left(x + \frac{1}{x} \right) + 2^2 + 4 \right)}{4 \left(1 + x^2 \right)^2}$$

$$= \frac{x^2 \left(\left(x + \frac{1}{x} - 2 \right)^2 + 4 \right)}{4 \left(1 + x^2 \right)^2} \ge 0$$

Donc: $\forall x \in \mathbb{R}^* : f(x) \le \frac{1}{4}$

b) Par exemple. 1 n'a pas d'antécédents par f

C'est-à-dire : l'équation : f(x)=1 n'a pas de solutions dans $\mathbb R$.

Donc : f n'est pas surjective

3) f n'est pas bijective

$$\mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

Exercice14: Soit l'application $f: (n;m) \mapsto n \times m$ et l'application $g: n \mapsto (n;(n+1)^2)$

- 1) *f* est-elle injective?
- 2) *f* est-elle surjective ?
- 3) g est-elle injective?
- 4) g est-elle surjective?

Solution: 1)

ullet f est injective ssi tout élément de $\,\mathbb{N}\,$ admet au plus un antécédent dans $\,\mathbb{N} \! imes \! \mathbb{N}\,$

C'est-à-dire : $\forall (n;m) \in \mathbb{N} \times \mathbb{N}$; $\forall (n';m') \in \mathbb{N} \times \mathbb{N}$

$$f(n;m) = f(n';m') \Rightarrow (n;m) = (n';m')$$

• f n'est pas injective si et seulement si il existe au moins un élément de $\mathbb N$ qui admet plus d'un antécédent dans $\mathbb N \times \mathbb N$ C'est-à-dire : $\exists (n;m) \in \mathbb N \times \mathbb N$; $\exists (n';m') \in \mathbb N \times \mathbb N$

$$f(n;m) = f(n';m')$$
 et $(n;m) \neq (n';m')$

Si je trouve : $(n;m) \neq (n';m')$ et f(n;m) = f(n';m') on peut affirmer que f n'est pas injective.

Si je prends: (1;2) *et* (2;1)

On a:
$$f(1,2)=1\times 2=2$$
 et $f(2,1)=2\times 1=2$

Donc:
$$\exists (1,2) \in \mathbb{N} \times \mathbb{N} ; \exists (2,1) \in \mathbb{N} \times \mathbb{N}$$

$$f(1;2) = f(2;1)$$
 Mais $(1;2) \neq (1;2)$

Donc: f n'est pas injective

2) f est surjective si et seulement si tout élément de $\mathbb N$ admet au moins un antécédent dans $\mathbb N \times \mathbb N$

C'est-à-dire :
$$\forall p \in \mathbb{N}$$
 ; $\exists (n,m) \in \mathbb{N} \times \mathbb{N}$ tel que : $f(n,m) = p$

Soit : $p \in \mathbb{N}$

$$f(n;m) = p \Leftrightarrow n \times m = p$$

Il suffit de prendre : n = p et m = 1 car : $p \times 1 = p$

C'est-à-dire :
$$\forall p \in \mathbb{N}$$
 ; $\exists (p;1) \in \mathbb{N} \times \mathbb{N}$; Tel que : $f(p;1) = p$

Donc: f est surjective.

$$\mathbb{N} \to \mathbb{N} \times \mathbb{N}$$

3)
$$g: n \mapsto (n;(n+1)^2)$$

Soient $n \in \mathbb{N}$ et $m \in \mathbb{N}$

$$g(n) = g(m) \Longrightarrow (n;(n+1)^2) = (m;(m+1)^2)$$

$$\Rightarrow n = m \text{ et } (n+1)^2 = (m+1)^2 \Rightarrow n^2 - m^2 - 2(n-m) = 0$$

$$\Rightarrow n = m$$
 et $n+1 = m+1 \Rightarrow n = m$ et $n = m \Rightarrow n = m$

Donc: g est injective

4)

 \bullet g n'est pas surjective ssi il existe au moins un élément de $\,\mathbb{N}$ qui n'admet pas d'antécédent dans $\,\mathbb{N}\times\mathbb{N}$

C'est-à-dire :
$$\exists (p;q) \in \mathbb{N} \times \mathbb{N} ; \forall n \in \mathbb{N} ; g(n) \neq (p;q)$$

• Si je trouve : $(p;q) \in \mathbb{N} \times \mathbb{N}$ qui n'a pas d'antécédent dans \mathbb{N} on peut affirmer que g n'est pas surjective.

Si je prends :
$$(1;1) \in \mathbb{N} \times \mathbb{N}$$

Supposons que : (1;1) a un antécédent dans $\mathbb N$

On a:
$$g(n) = (1;1) \Leftrightarrow (n;(n+1)^2) = (1;1)$$
 $\Leftrightarrow n = 1 \text{ et } (n+1)^2 = 1 \Leftrightarrow n = 1 \text{ et } n+1=1$

 $\Leftrightarrow n = 1$ et n = 0 absurde

Donc: g n'est pas surjective.

Remarque : il existe des éléments de $\mathbb{N} \times \mathbb{N}$ qui ont des antécédents dans \mathbb{N}

Par exemple :
$$(1;4)$$
 II existe : $1 \in \mathbb{N}$ tel que : $g(n) = (1;4)$ Car : $(1;(1+1)^2) = (1;4)$

C'est-à-dire : (1;4) a au moins un antécédent dans \mathbb{N} (pas suffisant pour affirmer que g est surjective car il faut que tous les éléments de l'ensemble d'arrivé aient des antécédents par g.)

Exercice15: Soit l'ensemble dans : $E = [0; +\infty]$

$$E \times E \rightarrow E \times E$$

Et soit l'application
$$f: (x;y) \mapsto (x \times y; \frac{y}{x})$$

- 1) Montrer que f est injective
- 2) Montrer que f est surjective
- 3) Déterminer f^{-1} la bijection réciproque de f

Solution : 1) Soit : (x; y) ; $(x'; y') \in E \times E$

Tel que : f(x; y) = f(x'; y'):

Montrons que : (x, y) = (x', y') ??

$$f(x;y) = f(x';y') \Leftrightarrow \left(x \times y ; \frac{y}{x}\right) = \left(x' \times y' ; \frac{y'}{x'}\right)$$

$$\Leftrightarrow \begin{cases} x \times y = x' \times y' \\ \frac{y}{x} = \frac{y'}{x'} \end{cases} \Leftrightarrow \begin{cases} x \times y = x' \times y' \\ yx' = y'x \end{cases}$$

$$\Leftrightarrow \begin{cases} x \times y = x' \times y' \\ y = \frac{y'x}{x'} \end{cases} \Rightarrow x \times \frac{y'x}{x'} = x' \times y' \text{ et } y = \frac{y'x}{x'}$$

$$\Rightarrow x^2 = x'^2$$
 et $y = \frac{y'x}{x'}$ $\Rightarrow x = x'$ et $y = \frac{y'x}{x'}$

Car
$$(x;y)$$
; $(x';y') \in]0; +\infty[\times]0; +\infty[\Rightarrow x = x' \text{ et } y = y' \Rightarrow (x;y) = (x';y')$

Donc: f est injective

2) Soit :
$$(z;t) \in E \times E$$
 ; $\exists ?(x;y) \in E \times E$

Tel que : f(x;y) = (z;t) ??

$$f(x;y) = (z;t) \Leftrightarrow \left(x \times y; \frac{y}{x}\right) = (z;t) \Leftrightarrow x \times y = z \text{ et } \frac{y}{x} = t \Leftrightarrow x \times y = z \text{ et } y = tx$$

$$\Leftrightarrow x \times tx = z \ et \ y = tx \Leftrightarrow x^2 = \frac{z}{t} \ et \ y = tx$$

$$\Leftrightarrow x = \sqrt{\frac{z}{t}} \ et \ y = \sqrt{\frac{z}{t}} \ t \ \Leftrightarrow x = \sqrt{\frac{z}{t}} \ et \ y = \sqrt{zt}$$

Donc: f surjective

3) Déterminons f^{-1} la bijection réciproque de f^{-1}

f est injective et surjective donc bijective

$$f(x;y) = (z;t) \Leftrightarrow (x;y) = f^{-1}(z;t) = \left(\sqrt{\frac{z}{t}};zt\right)$$

$$E \times E \rightarrow E \times E$$

Donc:
$$f^{-1}:(x;y) \mapsto \left(\sqrt{\frac{x}{y}};xy\right)$$

$$: \mathbb{R} \to \mathbb{R}$$

Exercice16: Soit l'application
$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto \frac{2x}{x^2+1}$

1) a) Montrer que :
$$f(\mathbb{R}) \subset [-1;1]$$

2) Déterminer :
$$f^{-1}\left(\left\{\frac{1}{2}\right\}\right)$$
 et $f^{-1}\left(\left\{4\right\}\right)$

3) Montrer que :
$$f$$
 est une bijection de $[-1;1]$ vers $[-1;1]$ et déterminer sa bijection réciproque f^{-1} .

Solution: 1) a) Montrons que :
$$f(\mathbb{R}) \subset [-1;1]$$

Soit
$$x \in \mathbb{R}$$
: Montrons que $-1 \le \frac{2x}{x^2 + 1} \le 1$

$$1 - f(x) = 1 - \frac{2x}{x^2 + 1} = \frac{x^2 - 2x + 1}{x^2 + 1} = \frac{(x - 1)^2}{x^2 + 1} \ge 0$$

Donc:
$$\frac{2x}{x^2+1} \le 1$$

$$f(x) - (-1) = \frac{2x}{x^2 + 1} + 1 = \frac{x^2 + 2x + 1}{x^2 + 1} = \frac{(x+1)^2}{x^2 + 1} \ge 0 \quad \text{Donc} : -1 \le \frac{2x}{x^2 + 1} \qquad \text{Par suite} : -1 \le \frac{2x}{x^2 + 1} \le 1$$

Conclusion :
$$f(\mathbb{R})\subset[-1;1]$$

C'est-à-dire : l'équation :
$$f(x)=0$$
 n'a pas de solutions dans $\mathbb R$ en effet : $f(\mathbb R)\subset [-1;1]$ et $2\not\in [-1;1]$

Donc :
$$f$$
 n'est pas surjective

2)
$$f$$
 est-elle injective ? justifier

Démarche1: Si je trouve :
$$x_1 \neq x_2$$
 et $f(x_1) = f(x_2)$ on peut affirmer que f n'est pas injective.

On a:
$$f(2) = \frac{2 \times 2}{2^2 + 1} = \frac{4}{5}$$
 et $f(\frac{1}{2}) = \frac{2 \times \frac{1}{2}}{(\frac{1}{2})^2 + 1} = \frac{1}{\frac{1}{4} + 1} = \frac{4}{5}$

On a : donc
$$f\left(\frac{1}{2}\right) = f\left(2\right)$$
 mais $\frac{1}{2} \neq 2$

Démarche2: Soient
$$x_1 \in \mathbb{R}$$
 et $x_2 \in \mathbb{R}$

$$f(x_1) = f(x_2) \Rightarrow \frac{2x_1}{x_1^2 + 1} = \frac{2x_2}{x_2^2 + 1} \Rightarrow 2x_1 \times (x_2^2 + 1) = 2x_2 \times (x_1^2 + 1) \Rightarrow x_1 \times x_2^2 + x_1 = x_2 \times x_1^2 + x_2$$

$$\Rightarrow x_1 \times x_2^2 - x_2 \times x_1^2 + x_1 - x_2 = 0 \Rightarrow x_1 x_2 \times (x_2 - x_1) - (x_2 - x_1) = 0$$

$$\Rightarrow (x_2 - x_1)(x_1x_2 - 1) = 0 \Rightarrow x_2 - x_1 = 0 \text{ ou } x_1x_2 - 1 = 0 \Rightarrow x_2 = x_1 \text{ ou } \boxed{x_1x_2 = 1}$$

Pour:
$$\frac{1}{2} \neq 2$$
 on a; $\frac{1}{2} \times 2 = 1$ et $f\left(\frac{1}{2}\right) = f(2)$

Donc: f n'est pas injective

3)
$$f(x) = \frac{2x}{x^2 + 1}$$
: Soit: $y \in [-1;1]$; Montrons que: $\exists ! x \in [-1;1]$ tel que: $f(x) = y$?

$$f(x) = y \Leftrightarrow \frac{2x}{x^2 + 1} = y \Leftrightarrow x^2y - 2x + y = 0$$
; $\Delta = 4 - 4y^2 = 4(1 - y^2) \ge 0$ car: $-1 \le y \le 1$

Alors l'équation admet une ou deux solutions :

Si : y = 0 alors : $x^2y - 2x + y = 0 \Leftrightarrow x^2 \times 0 - 2x + 0 = 0 \Leftrightarrow x = 0$ Alors l'équation admet une solution unique : x = 0

Si :
$$y=1$$
 alors : $\Delta = 0$ Alors l'équation admet une solution unique : $x = \frac{-b}{2a} = \frac{2}{2y} = \frac{1}{y} = 1$

Si :
$$y = -1$$
 alors : $\Delta = 0$ Alors l'équation admet une solution unique : $x = \frac{-b}{2a} = \frac{2}{2y} = \frac{1}{y} = -1$

Si:
$$y \notin \{-1; 0; 1\}$$
 alors: $x_1 = \frac{2 + \sqrt{4(1 - y^2)}}{2y} = \frac{2 + 2\sqrt{1 - y^2}}{2y} = \frac{1 + \sqrt{1 - y^2}}{y}$ ou $x_2 = \frac{2 - \sqrt{4(1 - y^2)}}{2y} = \frac{1 - \sqrt{1 - y^2}}{y}$

Montrons que :
$$x_1 = \frac{1 + \sqrt{1 - y^2}}{y} \notin [-1;1]$$
 et $x_2 = \frac{1 - \sqrt{1 - y^2}}{y} \in [-1;1]$

On a:
$$|y| \prec 1$$
 donc: $1 \prec \frac{1}{|y|}$ et on a: $1 \leq 1 + \sqrt{1 - y^2}$

Donc:
$$1 \prec \frac{\left|1 + \sqrt{1 - y^2}\right|}{|y|}$$
 cad $1 \prec \left|\frac{1 + \sqrt{1 - y^2}}{y}\right|$

Donc:
$$x_1 = \frac{1 + \sqrt{1 - y^2}}{y} \notin [-1;1]$$
 On montre aussi que: $x_2 = \frac{1 - \sqrt{1 - y^2}}{y} \in [-1;1]$

$$\exists ! x \in \mathbb{R} \text{ tel que} : f(x) = y$$

$$\begin{cases} f(x) = y \\ x \in [-1;1] \end{cases} \Leftrightarrow \begin{cases} f^{-1}(y) = x \\ y \in [-1;1] \end{cases}$$

$$f^{-1}:[-1;1] \to [-1;1]$$

Donc:
$$\forall x \in [-1;1]$$
; $x \mapsto \begin{cases} f^{-1}(x) = \frac{1 - \sqrt{1 - x^2}}{x} & \text{si } x \neq 0 \\ f^{-1}(0) = 0 \end{cases}$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

