http://www.xriadiat.com/

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Correction Série N°11: ENSEMBLES ET APPLICATIONS

Exercice1: Ecrire en extension l'ensemble suivant : $E = \left\{ \sin \left(\frac{\pi}{12} + \frac{n\pi}{6} \right) : n \in \mathbb{Z} \right\}$

Solution: On sait que la fonction cos est périodique de période 2π et $\frac{n\pi}{6} = 2\pi \Leftrightarrow n = 12$

 $n \in \{0;1;2;3;..;11\}$

On a donc: $B = \left\{ \sin\left(\frac{\pi}{12} + \frac{n\pi}{6}\right) : n \in [0;11] \right\}$

En tenant compte des relations : $\sin(\pi - x) = \sin x = -\sin(\pi + x) = -\sin(-x)$

On en déduit : $B = \left\{ \sin\left(\frac{\pi}{12}\right); \sin\left(\frac{3\pi}{12}\right); \sin\left(\frac{5\pi}{12}\right); -\sin\left(\frac{\pi}{12}\right); -\sin\left(\frac{3\pi}{12}\right); -\sin\left(\frac{5\pi}{12}\right) \right\}$

Exercice2: Soit l'ensemble suivant : $A = \left\{ \frac{2x}{x^2 + 1} / x \in \mathbb{R} \right\}$

1) Montrer que : $\frac{\sqrt{3}}{2} \in A$ et en déduire que : $A \neq \emptyset$

2) Montrer que : $A \subset [-1;1]$

Solution : 1) $\frac{\sqrt{3}}{2} \in A \Leftrightarrow \exists x \in \mathbb{R} / \frac{2x}{x^2 + 1} = \frac{\sqrt{3}}{2}$

 $\Leftrightarrow \exists x \in \mathbb{R} / \sqrt{3} (x^2 + 1) = 4x \Leftrightarrow \exists x \in \mathbb{R} / (x^2 + 1) = \frac{4\sqrt{3}}{3} x$

 $\Leftrightarrow \exists x \in \mathbb{R} / 3x^2 - 4\sqrt{3}x + 3 = 0$

 $\Leftrightarrow \exists x \in \mathbb{R} / \left(\sqrt{3}x\right)^2 - 2 \times 2\sqrt{3}x + \left(\sqrt{3}\right)^2 = 0$

 $\Leftrightarrow \exists x \in \mathbb{R} / \left(\sqrt{3}x - 3\right)^2 = 0 \Leftrightarrow \exists x \in \mathbb{R} / \sqrt{3}x - 3 = 0$

or: $\exists x \in \mathbb{R} / \sqrt{3}x - 3 = 0$ est vraie car: $\exists x = \sqrt{3} \in \mathbb{R} / \sqrt{3}x - 3 = 0$

Par suite : $\frac{\sqrt{3}}{2} \in A$ est vraie aussi

Remarque : on peut remarquer que : $\frac{2 \times \sqrt{3}}{\left(\sqrt{3}\right)^2 + 1} = \frac{\sqrt{3}}{2}$

Donc: $\exists x \in \mathbb{R} / \frac{2x}{x^2 + 1} = \frac{\sqrt{3}}{2}$ D'où: $\frac{\sqrt{3}}{2} \in A$

2) Montrons que : $A \subset [-1;1]$

Soit $y \in A$ Montrons que : $y \in [-1;1]$?

C'est à dire : Montrons que : $|y| \le 1$

On a: $y \in A$ Donc: $\exists x \in \mathbb{R} / \frac{2x}{x^2 + 1} = y$

$$|y| = \left| \frac{2x}{x^2 + 1} \right| = \frac{|2x|}{|x^2 + 1|} = \frac{2|x|}{x^2 + 1}$$

$$1 - \frac{2|x|}{x^2 + 1} = \frac{x^2 + 1 - 2|x|}{x^2 + 1} = \frac{|x|^2 + 1 - 2|x|}{x^2 + 1} = \frac{\left(|x| - 1\right)^2}{x^2 + 1} \ge 0$$

Donc: $|y| \le 1$

D'où: $\forall y \in \mathbb{R}$; $y \in A \Rightarrow [-1;1]$

Conclusion : $A \subset [-1;1]$

Exercice3: On considère les ensembles suivants : $E = \{1, 2, 3, 4, 5, 6, \dots, 20\}$

A et B deux parties de E tel que : $A = \{x \in E \mid x = 4k; k \in \mathbb{N}\}\$ et $B = \{x \in E \mid x = 3k; k \in \mathbb{N}\}\$

1) Ecrire en extension les ensembles A et B.

. 2)Déterminer les ensembles suivants : C_E^A ; C_E^B ; $C_E^{A \cup B}$; $C_E^{A \cap B}$; $C_E^A \cup C_E^B$ et $C_E^A \cap C_E^B$

3) Comparer : a) $C_{\scriptscriptstyle E}^{{\scriptscriptstyle A} \cup {\scriptscriptstyle B}}$ et $C_{\scriptscriptstyle E}^{\scriptscriptstyle A} \cap C_{\scriptscriptstyle E}^{\scriptscriptstyle B}$

b) $C_E^{A\cap B}$ et $C_E^A\cup C_E^B$

Solution : 1) $A = \{4;8;12;16;20\}$ et $B = \{3;6;9;12;15;18\}$

2)
$$C_E^A = \{ x \in E / x \notin A \}$$

$$C_E^A = \{1; 2; 3; 5; 6; 7; 9; 10; 11; 13; 14; 15; 17; 18; 19\}$$

$$C_E^B = \{ x \in E / x \notin B \}$$

$$C_E^B = \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20\}$$

$$A \cap B = \{12\}$$

$$A \cup B = \{3; 4; 6; 8; 9; 12; 15; 16; 18; 20\}$$

$$C_E^{A \cup B} = \{1; 2; 5; 7; 10; 11; 13; 14; 17; 19\}$$

$$C_E^{A \cap B} = E - \{12\} = \{1; 2; 3; 4; 11; 13, ...; 20\}$$

$$C_E^A \cap C_E^B = \{1; 2; 5; 7; 10; 11; 13; 14; 17; 19\}$$

$$C_E^A \cup C_E^B = \{1, 2, 3, 4, 11, 13, \dots, 20\}$$

3) On remarque que :

a)
$$C_E^{A \cup B} = C_E^A \cap C_E^B$$
 b) $C_E^{A \cap B} = C_E^A \cup C_E^B$

Exercice4: Soient A; B et C des parties d'un ensemble E non vide.

Simplifier :
$$\left(\left(\overline{A \cap \overline{B}}\right) \cap \left(\overline{A \cap \overline{C}}\right)\right) \cup A$$

Solution:
$$((\overline{A \cap \overline{B}}) \cap (\overline{A \cap \overline{C}})) \cup A = ((\overline{A} \cup \overline{\overline{B}}) \cap (\overline{A} \cup \overline{\overline{C}})) \cup A$$

$$= \left(\left(\overline{A} \cup B \right) \cap \left(\overline{A} \cup C \right) \right) \cup A = \left(\overline{A} \cup \left(B \cap C \right) \right) \cup A$$

$$=(\overline{A}\cup A)\cup(B\cap C)=E\cup(B\cap C)=E$$

Exercice5: Soient E un ensemble et A et B deux parties de E.

On suppose que : $A \cap B \neq \emptyset$; $A \cup B \neq E$; $A \nsubseteq B$; $\dot{B} \nsubseteq A$;

On pose
$$A_1 = A \cap B$$
; $A_2 = A \cap C_E^B$ et $A_3 = B \cap C_E^A$; $A_4 = C_E^{A \cup B}$

- 1) Montrer que A₁, A₂, A₃ et A₄ sont non vides.
- 2) Montrer que A_1 , A_2 , A_3 et A_4 sont deux à deux disjoints.
- 3) Montrer que $A_1 \cup A_2 \cup A_3 \cup A_4 = E$.

Solution :1) $A_1 = A \cap B \neq \emptyset$

D'après l'énoncé : $A_2 = A \cap C_E^B = A \setminus B \neq \emptyset$ Car $A \nsubseteq B$.

$$A_3 = B \cap C_E^A = B \setminus A \neq \emptyset \text{ Car } B \nsubseteq A$$

$$A_4 = C_E^{A \cup B}$$
) = $E \setminus (A \cup B) \neq \emptyset$ Car $A \cup B \neq E$,

en fait $A \cup B \nsubseteq E$ car $A \subset E$ et $B \subset E$.

2)
$$A_1 \cap A_2 = (A \cap B) \cap (A \cap C_E^B) = A \cap B \cap A \cap C_E^B = (A \cap A) \cap (B \cap C_E^B) = A \cap \emptyset = \emptyset$$

$$A_1 \cap A_3 = (A \cap B) \cap (B \cap C_E^A) = A \cap B \cap B \cap C_E^A = (B \cap B) \cap (A \cap C_E^A) = B \cap \emptyset = \emptyset$$

$$A_1 \cap A_4 = (A \cap B) \cap (C_E^{A \cup B}) = (A \cap B) \cap (C_E^A \cap C_E^B)$$

$$= A \cap B \cap C_E^A \cap C_E^B = (A \cap CEA) \cap (B \cap C_E^B) = \emptyset \cap \emptyset = \emptyset$$

$$A_2 \cap A_3 = (A \cap C_E^B) \cap (B \cap C_E^A)$$

$$=A \cap C_E^B \cap B \cap C_E^A = (A \cap C_E^A) \cap (B \cap C_E^B) = \emptyset \cap \emptyset = \emptyset$$

$$A_2 \cap A_4 = (A \cap C_E^B) \cap C_E^{A \cup B}$$

$$= (A \cap C_E^B) \cap (C_E^A \cap C_E^B)$$

$$=A \cap C_E^B \cap C_E^A \cap C_E^B$$

$$= (A \cap C_E^A) \cap (C_E^B \cap C_E^B) = \emptyset \cap C_E^B = \emptyset$$

$$A_3 \cap A_4 = (B \cap C_E^A) \cap C_E^{A \cup B}$$

$$= (B \cap C_E^A) \cap (C_E^A \cap C_E^B)$$

$$= B \cap C_E^A \cap C_E^A \cap C_E^B$$

$$= (B \cap C_E^B) \cap (C_E^A \cap C_E^A) = \emptyset \cap C_E^A = \emptyset$$

3) A₁, A₂, A₃ et A₄ sont deux à deux disjoints.

$$A_1 \cup A_2 \cup A_3 \cup A_4 = (A \cap B) \cup (A \cap C_E^B) \cup (B \cap C_E^A) \cup C_E^{A \cup B}$$

$$= (A \cap B) \cup (A \cap C_F^B) \cup (B \cap C_F^A) \cup (C_F^A \cap C_F^B)$$

$$= [(A \cap B) \cup (A \cap C_E^B)] \cup [(B \cap C_E^A) \cup (C_E^A \cap C_E^B)]$$

$$= [(A \cup A) \cap (A \cup C_E^B) \cap (B \cup A) \cap (B \cup C_E^B)] \cup [(B \cup C_E^A) \cap (B \cup C_E^B) \cap (C_E^A \cup C_E^A) \cap (C_E^A \cup C_E^B)]$$

$$= [A \cap (A \cup C_E^B) \cap (A \cup B) \cap E] \cup [(B \cup C_E^A) \cap E \cap C_E^A \cap (C_E^A \cup C_E^B)]$$

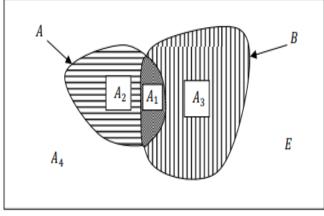
$$= [A \cap \{(A \cup C_E^B) \cap (A \cup B)\}] \cup [C_E^A \cap \{(B \cup C_E^A) \cap (C_E^A \cup C_E^B)\}]$$

$$= [A \cap \{A \cup (C_E^B \cap B)\}] \cup [C_E^A \cap \{C_E^A \cup (B \cap C_E^B\}] = [A \cap \{A \cup \emptyset\}] \cup [C_E^A \cap \{C_E^A \cup \emptyset\}]$$

$$= [A \cap A] \cup [C_E^A \cap C_E^A] = A \cup C_E^A = E$$

Remarque : (A_1, A_2, A_3, A_4) est une partition de E.

Sur un schéma c'est une évidence (E est le carré sur le schéma).



 $\mathbb{R} \to \mathbb{R}$

Exercice6: Soit *f* l'application :

$$x \mapsto x^3 + x$$

1) Montrer que : $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$; $x^2 + xy + y^2 + 1 \succ 0$

2) Montrer que : f est injective

Solution :1) Soit $v \in \mathbb{R}$ (on le fixe)

L'équation : $x^2 + xy + y^2 + 1 > 0$ devient une équation dont la variable est x

$$\Delta = y^2 - 4 \times 1 \times (y^2 + 1) = y^2 - 4y^2 + -4 = -3y^2 - 4 = -(3y^2 + 4) < 0$$

Le signe de : $x^2 + xy + y^2 + 1$ est celui de a = 1

Donc: $x^2 + xy + y^2 + 1 > 0$

Par suite : $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$ $x^2 + xy + y^2 + 1 > 0$

2) Montrons que : f est injective : Soient $x_1 \in \mathbb{R}$ et $x_2 \in \mathbb{R}$

Montrons que : $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$?

Supposons que : $f(x_1) = f(x_2)$

Donc: $x_1^3 + x_1 = x_2^3 + x_2 \Rightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0 \Rightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) + (x_1 - x_2) = 0$

$$\Rightarrow$$
 $(x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 1) = 0 \Rightarrow x_1 - x_2 = 0$ ou $x_1^2 + x_1x_2 + x_2^2 + 1 = 0$

Comme: $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$; $x^2 + xy + y^2 + 1 \succ 0$ alors $x_1^2 + x_1x_2 + x_2^2 + 1 \neq 0$

 $\Rightarrow x_1 - x_2 = 0 \Rightarrow x_1 = x_2$

Par suite : f est injective

$$f: \mathbb{R} \to \mathbb{R}^{*+}$$

Exercice7: Soit l'application:

$$x \mapsto \frac{1}{x^2 - 2x + 2}$$

- 1) Montrer que: f n'est pas injective
- 2) a) Montrer que : $f(\mathbb{R}) =]0;1]$
- b) f est-elle surjective? justifier

Solution:
$$f(x) = \frac{1}{x^2 - 2x + 2}$$

1) Montrons que : f n'est pas injective

On a:
$$f(0) = f(2) = \frac{1}{2}$$
 mais: $0 \neq 2$

Ceci signifie que l'application f n'est pas injective

2) a) Montrons que : $f(\mathbb{R}) = [0;1]$

On montre par double inclusions.

 \subset) Soit $y \in f(\mathbb{R})$; il existe $x \in \mathbb{R}$; tel que : f(x) = y

On a:
$$f(x) = \frac{1}{x^2 - 2x + 2} = \frac{1}{x^2 - 2x + 1 + 1} = \frac{1}{(x - 1)^2 + 1}$$

Comme:
$$(x-1)^2 \ge 0$$
 alors: $(x-1)^2 + 1 \ge 1$

Donc:
$$0 < \frac{1}{(x-1)^2 + 1} \le 1$$
 c'est-à-dire: $f(x) = y \in]0;1]$

C'est-à-dire :
$$f(\mathbb{R}) \subset [0;1]$$

$$\supset$$
) Soit $y \in [0;1]$

Résolvons l'équation :
$$f(x) = y$$
 dans \mathbb{R}

$$f(x) = y \Leftrightarrow \frac{1}{x^2 - 2x + 2} = y \Leftrightarrow 1 = y(x^2 - 2x + 2)$$

Car:
$$x^2 - 2x + 2 \neq 0 \ (\Delta < 0)$$

$$f(x) = y \Leftrightarrow yx^2 - 2xy + 2y - 1 = 0$$

Le discriminant \(\Delta \) de l'équation est :

$$\Delta = b^2 - 4ac = (-2y)^2 - 4y \times (2y - 1) = 4y \times (1 - y)$$

On a:
$$y \in [0,1] \Rightarrow 0 \prec y \le 1$$
 alors: $0 \le 1 - y < 1$ Donc: $\Delta = 4y \times (1 - y) \ge 0$

Donc l'équation
$$f(x) = y$$
 admet au moins une solution dans \mathbb{R} : Ceci signifie que : $y \in f(\mathbb{R})$

C'est-à-dire :
$$]0;1] \subset f(\mathbb{R})$$

Par suite :
$$f(\mathbb{R}) = [0;1]$$

$$f: \mathbb{R} \to \mathbb{R}$$

Exercice8: Soit l'application:

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{x|x|}{x^2 + 1}$$

1) a) Montrer que :
$$\forall x \in \mathbb{R} : -1 \prec f(x) \prec 1$$

- b) *f* est-elle surjective ? justifier
- 2) Montrer que f est injective

3) Déterminer :
$$f^{-1}\left(\left\{\frac{1}{2}\right\}\right)$$

- 4) a) Montrer que f est une bijection de \mathbb{R} dans]-1,1[
- b) Déterminer sa bijection réciproque. f^{-1}

Solution:
$$f(x) = \frac{x|x|}{x^2+1}$$

1) a) Montrons que :
$$\forall x \in \mathbb{R} : -1 \prec f(x) \prec 1$$

Utilisons un raisonnement par disjonction des cas :

Si:
$$x \ge 0$$
: $|x| = x$ et $f(x) = \frac{x \times x}{x^2 + 1} = \frac{x^2}{x^2 + 1}$

$$1 - f(x) = 1 - \frac{x^2}{x^2 + 1} = \frac{x^2 + 1 - x^2}{x^2 + 1} = \frac{1}{x^2 + 1} > 0 \text{ donc}: f(x) < 1$$

$$f(x)-(-1)=\frac{x^2}{x^2+1}+1=\frac{x^2+x^2+1}{x^2+1}=\frac{2x^2+1}{x^2+1} \succeq 0 \text{ donc}: -1 \prec f(x)$$

C'est-à-dire :
$$\forall x \ge 0 : -1 < f(x) < 1$$

Si:
$$x < 0$$
: $|x| = -x$ et $f(x) = \frac{-x \times x}{x^2 + 1} = \frac{-x^2}{x^2 + 1}$

On déjà montrer que :
$$-1 < \frac{x^2}{x^2 + 1} < 1$$
 (on procède comme précédemment)

Donc:
$$-1 < -\frac{x^2}{x^2 + 1} < 1$$

C'est-à-dire :
$$\forall x \prec 0 : -1 \prec f(x) \prec 1$$

Par suite :
$$\forall x \in \mathbb{R} : -1 \prec f(x) \prec 1$$

b) On a:
$$\forall x \in \mathbb{R} : -1 \prec f(x) \prec 1$$

2) Montrons que
$$f$$
 est injective :

Soient
$$x_1 \in \mathbb{R}$$
 et $x_2 \in \mathbb{R}$

Montrons que :
$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

Supposons:
$$f(x_1) = f(x_2)$$

$$f(x_1) = f(x_2) \Rightarrow \frac{x_1|x_1|}{x_1^2 + 1} = \frac{x_2|x_2|}{x_2^2 + 1}$$
 est vraie $\Rightarrow x_1$ et x_2 Ont le même signe.

Utilisons un raisonnement par disjonction des cas :

Si:
$$x_1 = 0$$
 alors: $\frac{0 \times |0|}{0^2 + 1} = \frac{x_2 |x_2|}{x_2^2 + 1} \implies 0 = x_2 |x_2| \implies 0 = x_2 \implies x_1 = x_2$

Si:
$$x_1 > 0$$
 et $x_2 > 0$ $\Rightarrow \frac{x_1|x_1|}{x_1^2 + 1} = \frac{x_2|x_2|}{x_2^2 + 1} \Rightarrow \frac{x_1^2}{x_1^2 + 1} = \frac{x_2^2}{x_2^2 + 1} \Rightarrow x_1^2(x_2^2 + 1) = x_2^2(x_1^2 + 1)$

$$\Rightarrow x_1^2 x_2^2 + x_1^2 = x_2^2 x_1^2 + x_2^2 \Rightarrow x_1^2 = x_2^2 \Rightarrow \sqrt{x_1^2} = \sqrt{x_2^2} \Rightarrow |x_1| = |x_2| \text{ et comme} : x_1 > 0 \text{ et } x_2 > 0$$

$$\Rightarrow x_1 = x_2$$

Si:
$$x_1 < 0$$
 et $x_2 < 0$ $\Rightarrow \frac{x_1|x_1|}{x_1^2 + 1} = \frac{x_2|x_2|}{x_2^2 + 1} \Rightarrow \frac{-x_1^2}{x_2^2 + 1} = \frac{-x_2^2}{x_2^2 + 1} \Rightarrow \frac{x_1^2}{x_2^2 + 1} = \frac{x_2^2}{x_2^2 + 1}$

$$\Rightarrow x_1^2 = x_2^2 \Rightarrow \sqrt{x_1^2} = \sqrt{x_2^2} \Rightarrow |x_1| = |x_2| \text{ et comme} : x_1 < 0 \text{ et } x_2 < 0$$

$$\Rightarrow -x_1 = -x_2 \Rightarrow x_1 = x_2$$

Donc:
$$\forall x_1 \in \mathbb{R} \text{ et } \forall x_2 \in \mathbb{R} : \frac{x_1 |x_1|}{{x_1}^2 + 1} = \frac{x_2 |x_2|}{{x_2}^2 + 1} \implies x_1 = x_2$$

Ceci signifie que l'application f est injective.

3) Déterminons :
$$f^{-1}\left(\left\{\frac{1}{2}\right\}\right)$$

$$f^{-1}\left(\left\{\frac{1}{2}\right\}\right) = \left\{x \in \mathbb{R} / f\left(x\right) \in \left\{\frac{1}{2}\right\}\right\} = \left\{x \in \mathbb{R} / f\left(x\right) = \frac{1}{2}\right\}$$

Soit:
$$x \in \mathbb{R}$$
: $f(x) = \frac{1}{2} \Leftrightarrow x^2 - 2x|x| + 1 = 0$

Si:
$$x \ge 0$$
 $x^2 - 2x \times x + 1 = 0 \Leftrightarrow x^2 - 2x^2 + 1 = 0 \Leftrightarrow -x^2 = -1 \Leftrightarrow x^2 = 1 \Leftrightarrow x = 1$ ou $x = 1$

Puisque:
$$x \ge 0$$
 $f(x) = \frac{1}{2} \Leftrightarrow x = 1$

Si:
$$x < 0$$
 $x^2 + 2x \times x + 1 = 0 \Leftrightarrow x^2 + 2x^2 + 1 = 0 \Leftrightarrow 3x^2 = -1 \Leftrightarrow x^2 = -\frac{1}{3}$ pas de solutions

Conclusion:
$$f(x) = \frac{1}{2} \Leftrightarrow x = 1$$

Par suite :
$$f^{-1}\left(\left\{\frac{1}{2}\right\}\right) = \left\{1\right\}$$

4) a) Montrer que f est une bijection de \mathbb{R} dans]-1,1[

Soit :
$$y \in]-1,1[$$
 : Montrons que : $\exists ! x \in \mathbb{R}$ tel que : $f(x) = y$

$$f(x) = y \Leftrightarrow \frac{x|x|}{x^2 + 1} = y$$

Utilisons un raisonnement par disjonction des cas :

Si:
$$y = 0$$
 alors $\frac{x|x|}{x^2 + 1} = 0 \Leftrightarrow x|x| = 0 \Leftrightarrow x = 0$

Donc:
$$\exists ! x = 0 \in \mathbb{R}$$
 tel que: $f(x) = 0$

Si:
$$y \in]0,1[$$
 alors $\frac{x|x|}{x^2+1} = y \Rightarrow x > 0$

$$\frac{x^2}{x^2+1} = y \Leftrightarrow x^2 = \left(x^2+1\right)y \Leftrightarrow x^2-x^2y = y \Leftrightarrow x^2\left(1-y\right) = y \Leftrightarrow x^2 = \frac{y}{1-y} \succ 0 \text{ car } : y = \left]0,1\right[$$

$$\frac{x^2}{x^2+1} = y \Leftrightarrow x = \sqrt{\frac{y}{1-y}} \text{ car} : x \succ 0$$

Donc: Si:
$$y \in]0,1[$$
 alors $\exists ! x \in \mathbb{R}$ tel que: $f(x) = y$

Si:
$$y \in]-1,0[$$
 alors $-1 \prec y \prec 0$

Donc:
$$\frac{x|x|}{x^2+1} = y \Rightarrow x < 0$$

$$\frac{-x^2}{x^2+1} = y \Leftrightarrow -x^2 = (x^2+1)y \Leftrightarrow -x^2 - x^2y = y \Leftrightarrow -x^2(1+y) = y \Leftrightarrow x^2 = \frac{-y}{1+y} > 0 \text{ car} : -1 < y < 0$$

$$-\frac{x^2}{x^2+1} = y \Leftrightarrow x = -\sqrt{\frac{-y}{1+y}}$$
 car : $x < 0$

Donc: Si:
$$y \in]-1,0[\exists!x \in \mathbb{R} \text{ tel que}: f(x) = y$$

Conclusion:
$$\forall y \in]-1,1[\exists! x \in \mathbb{R} \text{ tel que} : f(x) = y$$

Par suite :
$$f$$
 est une bijection de \mathbb{R} dans $]-1,1[$

Résumé : Si :
$$y \in [0,1[f(x) = y \Leftrightarrow x = \sqrt{\frac{y}{1-y}} = f^{-1}(y)]$$

Si:
$$y \in]-1,0[f(x) = y \Leftrightarrow x = -\sqrt{\frac{-y}{1+y}} = f^{-1}(y)$$

$$]-1,1[\rightarrow \mathbb{R}$$

Sa réciproque est l'application
$$f^{-1}$$
 définie par : $x \mapsto \begin{cases} \sqrt{\frac{x}{1-x}}si & x \in [0,1[\\ -\sqrt{\frac{-x}{1+x}}si & x \in]-1,0[\end{cases}$

Exercice9: Soient *E* et *F* deux ensembles et soit *f* une application de *E* dans *F*.

- 1) Montrer que pour toute partie A de E, on a : $A \subset f^{-1}(f(A))$.
- 2) Montrer que pour toute partie B de F, on a : $f(f^{-1}(B)) \subset B$.
- 3) Montrer que f est injective si et seulement si pour toute partie A de E on a $A = f^{-1}(f(A))$.
- 4) Montrer que f est surjective si et seulement si pour toute partie B de F on a $f(f^{-1}(B)) = B$
- 5) Montrer que f est bijective si et seulement si pour toute partie A de E, on a : $f(\overline{A}) = f(A)$

Solution :1) Pour tout $x \in A$, $f(x) \in f(A)$ et donc $x \in f^{-1}(f(A))$,

Ce qui montre que $A \subset f^{-1}(f(A))$

2) Pour tout $y \in f(f^{-1}(B))$, il existe $x \in f^{-1}(B)$ tel que y = f(x), comme $x \in f^{-1}(B)$ $f(x) \in B$ Ce qui entraine que $y \in B$

Ce qui montre que $f(f^{-1}(B)) \subset B$.

3) Comme « pour toute partie A de E,

On a $A \subset f^{-1}(f(A))$ » la question revient à montrer que :

« f est injective si et seulement si pour toute partie A de E on a $A \supset f^{-1}(f(A))$ »

Si f est injective. Pour tout $x \in f^{-1}(f(A)), f(x) \in f(A)$ ce qui signifie qu'il existe $x' \in A$

(Attention, à priori ce n'est pas le même x que celui du début de la phrase) tel que f(x) = f(x') comme f est injective :x = x', par conséquent $x \in A$.

On a montré que $f^{-1}(f(A)) \subset A$.

Si pour toute partie $A \subset E$, $f^{-1}(f(A)) \subset A$

 $f(x_1) = f(x_2) = y$

On prend $A = \{x_1\} : f(A) = f(\{x_1\}) = \{f(x_1)\} = \{y\}$

 $\Rightarrow f^{-1}(f(A)) = f^{-1}(\{y\}) = f^{-1}(y)$

D'après l'hypothèse $f^{-1}(f(A)) \subset A$

Donc $\{f^{-1}(y)\}\subset \{x_1\}$ Or $x_2\in f^{-1}(y)$ car $f(x_2)=y$

Donc $x_2 \in \{x_1\}$ par conséquent $x_1 = x_2$ ce qui signifie que f est injective.

Finalement on a montré l'équivalence demandée.

4) Comme « pour toute partie B de F, on a :

 $f(f^{-1}(B)) \subset B$ » la question revient à montrer que :

« f est surjective si et seulement si pour toute partie B de F on a : $f(f^{-1}(B)) \supset B$ »

Si *f* est surjective.

Pour tout $y \in B$, il existe $x \in E$ tel que y = f(x) car f est surjective.

 $x \in f^{-1}(B)$ entraine que : $y = f(x) \in f(f^{-1}(B))$,

Cela montre que $B \subset f(f^{-1}(B))$.

Si pour tout $B \subset f(f^{-1}(B))$

On pose $B = \{y\}$, alors $\{y\} \subset f(f^{-1}(\{y\}))$

ce qui s'écrit aussi $y \in f(f^{-1}(\{y\})),$

il existe donc $x \in f^{-1}(\{y\})$ tel que y = f(x),

Cela montre bien que f est surjective.

Finalement on a montré l'équivalence demandée

6)Supposons que f est bijective et Montrons que : $f(\overline{A}) = \overline{f(A)}$

Soit: $y \in f(\overline{A}) \Rightarrow \exists x \in \overline{A} \text{ tel que } y \in f(x)$

 $\Rightarrow \exists x \in E \text{ et } x \notin A \text{ tel que } y \in f(x)$

Or $x \notin A$ alors : $f(x) \notin f(A)$ car

Si $f(x) \in f(A)$ alors : $\exists a \in A$ tel que $y \in f(a)$

Donc: f(a) = f(x) et donc: a = x car finjective

Donc : absurde

Donc: $f(x) \notin f(A) \Rightarrow f(x) \in \overline{f(A)}$

Par suite :
$$f(\overline{A}) \subset \overline{f(A)}$$

Inversement : Soit :
$$y \in \overline{f(A)} \Rightarrow y \notin f(A)$$
 et $y \in F$

Or
$$y \in F$$
 et f surjective alors : $\exists x \in E \ y = f(x)$

$$\Rightarrow f(x) \notin f(A) \Rightarrow x \notin A \Rightarrow x \in \overline{A} \Rightarrow f(x) = y \in f(\overline{A})$$

Par suite :
$$\overline{f(A)} \subset f(\overline{A})$$

Donc : si
$$f$$
 est bijective alors : $f(\overline{A}) = \overline{f(A)}$

$$\iff$$
 si $f(\overline{A}) = \overline{f(A)}$ montrons que f est bijective

• Montrons que f est surjective

Il suffit démontrer que :
$$f(E) = F$$

Si:
$$A = \emptyset$$
. $\Rightarrow f(\overline{\emptyset}) = \overline{f(\emptyset)} \Rightarrow f(E) = \overline{\emptyset} = E$

Il suffit de montrer que :
$$f^{-1}(f(A)) = A$$

On a :
$$f(\overline{A}) = \overline{f(A)} \Rightarrow \overline{f(\overline{A})} = f(A) \Rightarrow f^{-1}(\overline{f(\overline{A})}) = f^{-1}(f(A)) \Rightarrow f^{-1}(\overline{f(\overline{A})}) \Rightarrow A = f^{-1}(f(A)) \Rightarrow A = f^{-1}(f(A)) \Rightarrow f^{-1}(\overline{f(\overline{A})}) \Rightarrow A = f^{-1}(f(A)) \Rightarrow f^$$

Exercice10 : Soient
$$E$$
 ; F ; G trois ensembles et f une application $\det F$ dans G

Montrer que :
$$f$$
 est injective si et seulement si $\forall (g;h) \in (A(E;F))^2$; $f \circ g = f \circ h \Rightarrow g = h$

Remarque :
$$A(E;F)$$
 l'ensembles des applications de E dans F .

Solution:
$$\Rightarrow$$
) On suppose que: f est injective

Soient :
$$g;h$$
 deux applications de E dans F

Telles que :
$$f \circ g = f \circ h$$

Alors:
$$\forall x \in E$$
; $(f \circ g)(x) = (f \circ h)(x)$

Donc:
$$\forall x \in E$$
; $f(g(x)) = f(h(x))$

Puisque :
$$f$$
 est injective alors : $\forall x \in E : g(x) = h(x)$

Donc :
$$g = h$$

$$(\forall (g;h) \in (A(E;F))^2$$
; $f \circ g = f \circ h \Rightarrow g = h$)

$$\Rightarrow f$$
 est injective

On démontre la contraposée :

$$f$$
 n'est pas injective \Rightarrow on peut trouver g ; h deux applications de E dans F

Telles que :
$$g \neq h$$
 et $f \circ g = f \circ h$

$$f$$
 N'est pas injective \Rightarrow il existent $a \in F; b \in F$ tels que : $f(a) = f(b)$ et $a \neq b$

On définit :
$$g: E \to F$$
 et On définit : $h: E \to F$ $x \mapsto b$

On a:
$$(g;h) \in (A(E;F))^2$$
 et $g \neq h$

Soit
$$x \in E$$
: $(f \circ g)(x) = f(g(x)) = f(a) = f(b)$

$$(f \circ h)(x) = f(h(x)) = f(b) = f(a)$$

On donc aussi : $f \circ g = f \circ h$

Donc : on a établi que : par contraposée que :

$$(\forall (g;h) \in (A(E;F))^2$$
; $f \circ g = f \circ h \Rightarrow g = h$)

 \Rightarrow f est injective.

Le but est de tester si vous avez bien compris la définition de fonctions injectives, surjectives, bijectives, à l'aide d'exercices simples. Faites bien attention aux ensembles de départ et d'arrivée de ces fonctions

Exercice11: Fonctions caractéristiques

$$I_A: E \to \{0;1\}$$

Soit A une partie d'un ensemble E. On lui associe l'application suivante :

$$x \mapsto \begin{cases} 1 & si \ x \in A \\ 0 & si \ x \notin A \end{cases}$$

1) Montrer que pour toutes parties A et B de E, on a :

a)
$$I_{B-A} = I_B - I_A \operatorname{si} A \subseteq B$$

b)
$$I_{A \cap B} = I_A \times I_B$$

a)
$$I_{B-A}=I_B-I_A$$
 si A \subseteq B.
b) $I_{A\cap B}=I_A\times I_B$ c) $I_{A\cup B}=I_A+I_B$, si A et B sont disjointes. d) $I_{A\cup B}=I_A+I_B-I_{A\cap B}$

$$d) \ I_{A \cup B} = I_A + I_B - I_{A \cap B}$$

c) $I_{A \cup B} = I_A + I_B$, si A et B sont disjointes. u) $I_{A \cup B} - I_A = I_B$ 2) On note F(E, {0, 1}) l'ensemble des applications de E dans {0, 1}.

Montrer que l'application :
$$f: P(E) \to F(E, \{0, 1\})$$
 est une bijection. $A \mapsto I_A$

3) Soit $C \in P(E)$.

Montrer que $A\triangle B = A\triangle C$ si, et seulement si B = C. (En ne faisant que des calculs de fonctions caractéristiques.)

Solution: 1) (a), (b), (c) Les trois réponses étant similaires, on traite intégralement la première, et laissons les autres au lecteur ou à la lectrice. Soient donc A et B deux parties de E telles que $A \subseteq B$. On souhaite montrer que pour tout $x \in E$,

$$I_{B-A}(x) = I_B(x) - I_A(x)$$
 Soit $x \in E$.

1er cas : $x \in B \setminus A$. On a alors $I_{B-A}(x) = 1$.

Comme $x \in B$, on a $I_B(x) = 1$ et comme $x \notin A$, $I_A(x) = 0$.

Ainsi, on a bien :
$$I_B(x) - I_A(x) = 1 - 0 = 1 = I_{B-A}(x)$$

2nd cas : $x \notin B \setminus A$. On a alors que $I_{B-A}(x) = 0$.

De plus, il y a alors deux possibilités :

ou bien $x \notin B$, ou bien $x \in A$.

Si x \notin B, alors $I_R(x) = 0$ et x \notin A car A \subseteq B,

Donc: aussi $I_A(x) = 0$.

Ainsi:
$$I_B(x) - I_A(x) = 0 - 0 = 0 = I_{B-A}(x)$$

Si $x \in A$, alors aussi $x \in B$ car $A \subseteq B$.

On aura donc $I_B(x) - I_A(x) = 1 - 1 = 0 = I_{B-A}(x)$ Conclusion : dans tous les cas, on a bien montré que pour tout $x \in E$, $I_{B-A}(x) = I_B(x) - I_A(x)$

C'est à dire : $I_{B-A} = I_B - I_A$

d) On utilise les questions précédentes et le fait que l'on peut décomposer A∪B en trois parties disjointes:

 $A \cup B = (A \setminus A \cap B) \cup (B \setminus A \cap B) \cup A \cap B.$

2) On doit montrer que f est injective et surjective. Commençons par l'injectivité.

On doit montrer que pour toutes parties $A \in P(E)$ et $A' \in P(E)$ telles que $I_A = I_{A'}$ on a A = A'.

Soient donc $A \in P(E)$ et $A' \in P(E)$ telles que $I_A = I_{A'}$ Procédons par double inclusion.

Soit $a \in A$. On a alors $I_A(a) = 1$. Or $I_A(a) = I_B(a) = 1$

Donc : $a \in A'$ par définition de $I_{A'}$.

Ainsi, $A \subseteq A'$. Par symétrie, on a aussi que $A' \subseteq A$. Conclusion : on a montré que pour toutes

parties : $A \in P(E)$ et $A' \in P(E)$ telles que : $I_A = I_{A'}$ on a A = A' c'est-à-dire : f est injective.

Montrons que f est surjective.

Soit $g \in F(E, \{0, 1\})$. Posons $A = \{x \in E \mid g(x) = 1\} \in P(E)$.

Montrons que : $g = I_A = f(A)$.

Soit $\mathbf{x} \in \mathsf{E}$. Si $\mathbf{x} \in A$, alors : $I_{A}(\mathbf{x}) = 1 = g(\mathbf{x})$ par définition de A et de I_{A} .

Si x $\notin A$, alors $I_A(x) = g(x)$) par définition de A et de I_A .

Conclusion : On a montré que pour tout $g \in F(E, \{0, 1\})$, il existe $A \in P(E)$ telle que g = f(A) c'est-àdire : f est surjective.

3) Soit $C \in P(E)$. Montrons que $A\Delta B = A\Delta C$ si, et seulement si : B = C.

A Δ B = A Δ C équivaut à : $I_{A\Delta B} = I_{A\Delta C}$

Car : $f:P(E) \to F(E, \{0, 1\})$ est injective

 ${\sf A}{\vartriangle}{\sf B}={\sf A}{\vartriangle}{\sf C}$ équivaut à : $I_{{\scriptscriptstyle A}{\vartriangle}{\sf B}}=I_{{\scriptscriptstyle A}{\vartriangle}{\sf C}}$

De plus, par la question 1), on a :

$$I_{{\scriptscriptstyle A} \triangle {\scriptscriptstyle B}} = I_{({\scriptscriptstyle A} \cup {\scriptscriptstyle B}) - ({\scriptscriptstyle A} \cap {\scriptscriptstyle B})} = I_{{\scriptscriptstyle A} \cup {\scriptscriptstyle B}} - I_{{\scriptscriptstyle A}} \times I_{{\scriptscriptstyle B}} = I_{{\scriptscriptstyle A}} + I_{{\scriptscriptstyle B}} - 2I_{{\scriptscriptstyle A}} \times I_{{\scriptscriptstyle B}} = I_{{\scriptscriptstyle A}}^2 + I_{{\scriptscriptstyle B}}^2 - 2I_{{\scriptscriptstyle A}} \times I_{{\scriptscriptstyle B}}$$

Cette égalité vient du fait que I_A et I_B sont à valeurs dans {0, 1} et que 0 2 = 0 et 1 1 = 1.

Donc: $I_{AAB} = (I_A - I_B)^2$

Ainsi, A Δ B = A Δ C équivaut à : $(I_A - I_B)^2 = (I_A - I_C)^2$

Attention : ceci n'est équivalent à $I_A - I_B = I_A - I_C$

que si les deux côtés de cette dernière égalité sont de même signe.

En fait, c'est toujours le cas.

En effet, si $x \in A$, alors $I_A(x) = 1$ et $I_A(x) - I_B(x) \ge 0$ car $I_B(x) \in \{0, 1\}$, idem on a :

$$I_A(x) - I_C(x) \ge 0$$

Si x \notin A, alors $I_A(x) = 0$ et $I_A(x) - I_B(x) \le 0$ car $I_B(x) \in \{0, 1\}$ et encore $I_A(x) - I_C(x) \le 0$.

On a donc bien dans tous les cas : $I_{\scriptscriptstyle A}-I_{\scriptscriptstyle B}=I_{\scriptscriptstyle A}-I_{\scriptscriptstyle C}$ Ce qui équivaut à : $I_{\scriptscriptstyle B}=I_{\scriptscriptstyle C}$

et, comme f est injective, ceci équivaut à : B = C.

Exercice12: Résoudre dans : $A(\mathbb{R};\mathbb{R})$ l'équation : $\forall (x,y) \in \mathbb{R}^2$; $f(x+y) = x+y^2$

 $A(\mathbb{R};\mathbb{R})$: désigne l'ensemble des applications de \mathbb{R} dans \mathbb{R}

Solution : Soit : $S = \{ f \in A(\mathbb{R}; \mathbb{R}) / \forall (x, y) \in \mathbb{R}^2; f(x, y) = x + y^2 \}$

On raisonne par double implication :

Soit: $f \in S \Rightarrow \forall (x, y) \in \mathbb{R}^2$; $f(x+y) = x+y^2$

 $\Rightarrow \forall x \in \mathbb{R} ; f(x+0) = x (y=0)$

 $\Rightarrow \forall x \in \mathbb{R} ; f(x) = x (y = 0) \Rightarrow f \in \{Id_{\mathbb{R}}\} \text{ Donc} : S \subset \{Id_{\mathbb{R}}\}$

Inversement : montrons que : $\{\mathit{Id}_{\mathbb{R}}\}\!\subset\!S$

Soit: $f \in \{Id_{\mathbb{R}}\} \Rightarrow f(x) = x$; $\forall x \in \mathbb{R}$

Et Soit $(x; y) \in \mathbb{R}^2$ On a : $f(0+2) = 2 \neq 0 + 2^2 = 4$

 $\label{eq:definition} \begin{aligned} & \mathsf{Donc} : \mathit{Id}_{\mathbb{R}} \not \in S \\ & \mathsf{Conclusion} : \mathit{S} = \varnothing \end{aligned}$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

