http://www.xriadiat.com/

PROF: ATMANI NAJIB

1er BAC Sciences Mathématiques BIOF

Correction Série N°1: ENSEMBLES ET APPLICATIONS

Exercice1: Vraie ou Faux

- 1) L'ensemble des multiples de 1 est : \mathbb{N}^*
- 2) L'ensemble des solutions de l'équation : $x^4-1=0$ dans $\mathbb R$ est : $S=\left\{-1;1\right\}$
- 3) $\frac{3}{25} \in \mathbb{D}$: l'ensemble des nombres décimaux

Solution : 1) n est un multiple de 1 signifie : $n = k \times 1$ avec $k \in \mathbb{N}$

On a : $0 = 0 \times 1$ donc : 0 est un multiple de 1

Mais : $0 \notin \mathbb{N}^*$ donc : faux

2) Soit S l'ensemble des solutions de l'équation : $x^4 - 1 = 0$

Soit
$$x \in \mathbb{R}$$
: $x \in S \Leftrightarrow x^4 - 1 = 0 \Leftrightarrow (x^2) - 1^2 = 0 \Leftrightarrow (x^2 - 1)(x^2 + 1) = 0$

$$x \in S \iff x^2 - 1 = 0$$
 ou $x^2 + 1 = 0$

 $x \in S \Leftrightarrow x^2 = 1$ ou $x^2 = -1$ or $x^2 = -1$ n'a pas de solution dans \mathbb{R}

$$x \in S \Leftrightarrow x = 1$$
 ou $x = -1 \Leftrightarrow x \in \{-1, 1\}$

Donc: $S = \{-1, 1\}$ donc: vraie

3)
$$\frac{3}{25} = \frac{3 \times 4}{25 \times 4} = \frac{12}{100} = \frac{12}{10^2} \in D$$
: l'ensemble des nombres décimaux donc : vraie

Exercice2: Ecrire en extension les ensembles suivants:

1)
$$D = \{ n \in \mathbb{Z} / n/6 \}$$

2)
$$A = \{ n \in \mathbb{Z} / n + 1 \ge n^2 \}$$

3)
$$B = \{x \in \mathbb{Q} / (x^2 - 3)(x^2 - 3x + 2) = 0\}$$

$$4)C = \left\{ n \in \mathbb{Z} / \frac{17}{n^2 + 1} \in \mathbb{Z} \right\}$$

Solution : 1) $6 = 1 \times 2 \times 3$: $D_6 = \{-1, 1, 2, -2, 3, -3, -6, 6\}$

Soit $n \in \mathbb{Z}$: $n \in D \Leftrightarrow n/6 \Leftrightarrow n \in \{-1,1,2,-2,3,-3,-6,6\}$ Donc: $D = \{-1,1,2,-2,3,-3,-6,6\}$

2)
$$A = \{n \in \mathbb{Z} / n + 1 \ge n^2\}$$

Soit $n \in \mathbb{Z}$: $n \in A \Leftrightarrow n+1 \ge n^2 \Leftrightarrow n^2-n \le 1 \Leftrightarrow 0 \le n^2-n \le 1$

$$n \in A \Leftrightarrow n^2 - n = 0 \Leftrightarrow n(n-1) = 0 \Leftrightarrow n-1 = 0 \text{ ou } n = 0$$

$$n \in A \Leftrightarrow n = 1 \text{ ou } n = 0 \Leftrightarrow n \in \{0; 1\}$$

Donc: $A = \{0; 1\}$

3)
$$B = \{x \in \mathbb{Q} / (x^2 - 3)(x^2 - 3x + 2) = 0\}$$

Soit $x \in \mathbb{Q}$:

$$x \in B \Leftrightarrow (x^2 - 3)(x^2 - 3x + 2) = 0$$

$$x \in B \iff x^2 - 3 = 0 \text{ ou } x^2 - 3x + 2 = 0$$

$$x \in B \iff x^2 = 3 \text{ ou } x^2 - 2x - (x - 2) = 0$$

$$x \in B \Leftrightarrow x = -\sqrt{3} \text{ ou } x = \sqrt{3} \text{ ou } (x-2)(x-1) = 0$$

Or
$$-\sqrt{3} \notin \mathbb{Q}$$
 et $\sqrt{3} \notin \mathbb{Q}$

$$x \in B \iff x - 2 = 0$$
 ou $x + 2 = 0$

$$x \in B \Leftrightarrow x = 2 \text{ ou } x = -2 \Leftrightarrow x \in \{-2; 2\}$$

Donc:
$$B = \{-2; 2\}$$

$$4)C = \left\{ n \in \mathbb{Z} / \frac{17}{n^2 + 1} \in \mathbb{Z} \right\}$$

Soit
$$n \in \mathbb{Z}$$
: $n \in C \Leftrightarrow \frac{17}{n^2+1} \in \mathbb{Z} \Leftrightarrow n^2+1/17 \in \mathbb{Z} \Leftrightarrow n^2+1 \in \{1;17\}$ Car: $n^2+1 \geq 0$

$$n \in C \iff n^2 + 1 = 1$$
 ou $n^2 + 1 = 17$

$$n \in C \Leftrightarrow n^2 = 0$$
 ou $n^2 = 16$

$$n \in C \Leftrightarrow n = 0$$
 ou $n = -4$ ou $n = 4$

Donc:
$$C = \{-4; 0; 4\}$$

Exercice3: On considère les ensembles suivants : $E = \{1, 2, 3, 4, 5, 6, \dots, 20\}$

A et B deux parties de E tel que : $A = \{x \in E \mid x = 4k; k \in \mathbb{N}\}\$ et $B = \{x \in E \mid x = 3k; k \in \mathbb{N}\}\$

- 1) Ecrire en extension les ensembles A et B.
- 2)Déterminer les ensembles suivants : C_E^A ; C_E^B ; $C_E^{A \cup B}$; $C_E^{A \cap B}$; $C_E^A \cup C_E^B$ et $C_E^A \cap C_E^B$
- 3) Comparer : a) $C_{\scriptscriptstyle E}^{{\scriptscriptstyle A} \cup {\scriptscriptstyle B}}$ et $C_{\scriptscriptstyle E}^{\scriptscriptstyle A} \cap C_{\scriptscriptstyle E}^{\scriptscriptstyle B}$

b)
$$C_{\scriptscriptstyle E}^{\scriptscriptstyle A\cap B}$$
 et $C_{\scriptscriptstyle E}^{\scriptscriptstyle A}\cup C_{\scriptscriptstyle E}^{\scriptscriptstyle B}$

Solution : 1) $A = \{4,8,12,16,20\}$ et $B = \{3,6,9,12,15,18\}$

2)
$$C_E^A = \{ x \in E / x \notin A \}$$

$$C_E^A = \{1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19\}$$

$$C_E^B = \{ x \in E / x \notin B \}$$

$$C_E^B = \{1; 2; 4; 5; 7; 8; 10; 11; 13; 14; 16; 17; 19; 20\}$$

$$A \cap B = \{12\}$$

$$A \cup B = \{3, 4, 6, 8, 9, 12, 15, 16, 18, 20\}$$

$$C_E^{A \cup B} = \{1; 2; 5; 7; 10; 11; 13; 14; 17; 19\}$$

$$C_E^{A \cap B} = E - \{12\} = \{1, 2, 3, 4, 11, 13, \dots, 20\}$$

$$C_E^A \cap C_E^B = \{1; 2; 5; 7; 10; 11; 13; 14; 17; 19\}$$

$$C_E^A \cup C_E^B = \{1; 2; 3; 4; 11; 13....; 20\}$$

3) On remarque que :

a)
$$C_E^{A \cup B} = C_E^A \cap C_E^B$$
 b) $C_E^{A \cap B} = C_E^A \cup C_E^B$

Exercice4: Vraie ou faux

1)
$$\left\{-\frac{1}{5}, \frac{1}{2}\right\} \subset D$$
: l'ensemble des nombres décimaux

$$2) \left\{ \sqrt{2}; \frac{1}{8}; 0 \right\} \subset \mathbb{R}^*$$

3)
$$\{-1;0;1\} \subset \left\{ n \in \mathbb{Z} / \frac{2n}{|n|+1} \in \mathbb{Z} \right\}$$

Solution : 1) il faut montrer que :
$$-\frac{1}{5} \in D$$
 et $\frac{1}{2} \in D$ Or : $-\frac{1}{5} = -\frac{2}{10} = -\frac{2}{10^1} \in D$ et $\frac{1}{2} = \frac{5}{10} = \frac{5}{10^1} \in D$

Par suite :
$$\left\{-\frac{1}{5}; \frac{1}{2}\right\} \subset D$$
 donc : **vraie**

$$2) \left\{ \sqrt{2}; \frac{1}{8}; 0 \right\} \subset \mathbb{R}^* ??$$

On a :
$$\sqrt{2} \in \mathbb{R}^*$$
 et $\frac{1}{8} \in \mathbb{R}^*$ mais : $0 \notin \mathbb{R}^*$ Par suite : $\left\{\sqrt{2}; \frac{1}{8}; 0\right\} \not\subset \mathbb{R}^*$ donc : **faux**

3)
$$\left\{-1;0;1\right\} \subset \left\{n \in \mathbb{Z} / \frac{2n}{|n|+1} \in \mathbb{Z}\right\}$$
? On pose : $A = \left\{n \in \mathbb{Z} / \frac{2n}{|n|+1} \in \mathbb{Z}\right\}$

On a:
$$-1 \in \mathbb{Z}$$
 et $\frac{2(-1)}{|-1|+1} = \frac{-2}{2} = -1 \in \mathbb{Z}$ donc: $-1 \in A$

Et On a :
$$0 \in \mathbb{Z}$$
 et $\frac{2 \times 0}{|0|+1} = \frac{0}{1} = 0 \in \mathbb{Z}$ donc : $0 \in A$

Et on a :
$$1 \in \mathbb{Z}$$
 et $\frac{2 \times 1}{|1|+1} = \frac{2}{2} = 1 \in \mathbb{Z}$ donc : $1 \in A$

Donc:
$$\forall n \in \{-1, 0, 1\} \Rightarrow n \in A$$

Donc:
$$\{-1;0;1\} \subset \left\{ n \in \mathbb{Z} / \frac{2n}{|n|+1} \in \mathbb{Z} \right\}$$
 vraie

Exercice5:
$$A = \{k \in \mathbb{Z} / |2k+1| \le 3\}$$
 et $B = \{-2, -1, 0, 1\}$

Montrons que :
$$A = B$$

Pour montrer que
$$E = F$$
, on montre que $E \subset F$ et que $F \subset E$.

Soit
$$k \in \mathbb{Z}$$

$$k \in A \Leftrightarrow k \in \mathbb{Z}$$
 et $|2k+1| \le 3 \Leftrightarrow k \in \mathbb{Z}$ et $-3 \le 2k+1 \le 3 \Leftrightarrow k \in \mathbb{Z}$ et $-4 \le 2k \le 2 \Leftrightarrow 2 \Leftrightarrow 2k \le 2 \Leftrightarrow 2k$

$$k \in \mathbb{Z}$$
 et $-2 \le k \le 1 \Leftrightarrow k \in \{-2, -1, 0, 1\} \Leftrightarrow k \in B$

Donc on a :
$$k \in A \Leftrightarrow k \in B$$

Donc :
$$A = B$$

Exercice6:
$$A = \left\{ x \in \mathbb{R} - \{-1\} / \frac{5x+1}{x+1} < 2 \right\}$$
 et $B = \left\{ x \in \mathbb{R} / |x| < 1 \right\}$

Montrons que :
$$A \neq B$$

Solution: a) On va écrire l'ensemble
$$A$$
 en extension

Soit
$$x \in \mathbb{R} - \{-1\}$$
 : $x \in A \Leftrightarrow \frac{5x+1}{x+1} < 2 \Leftrightarrow \frac{5x+1}{x+1} - 2 < 0 \Leftrightarrow \frac{3x-1}{x+1} < 0$

$$3x-1=0 \Leftrightarrow 3x=1 \Leftrightarrow x=\frac{1}{3}$$

$$x+1=0 \Leftrightarrow x=-1$$

Tableau de signe :

x	-∞ -	-1	$\frac{1}{3}$	$+\infty$
3x-1	_	_	þ	+
x+1	- (+		+
$\frac{3x-1}{x+1}$	+	_	þ	+

$$x \in A \Leftrightarrow \frac{3x-1}{x+1} < 0 \Leftrightarrow \left[-1; \frac{1}{3} \right[$$

Donc :
$$A = \left[-1; \frac{1}{3} \right[$$

b) Soit
$$x \in \mathbb{R}$$
 : $x \in B \Leftrightarrow |x| < 1 \Leftrightarrow -1 < x < 1 \Leftrightarrow x \in]-1;1[$

Donc :
$$A =]-1;1[$$

Donc:
$$A \neq B$$

Remarque : on peut sans écrire l'ensemble
$$A$$
 en extension

Remarquer que :
$$\frac{1}{2} \in B \text{ car} \left| \frac{1}{2} \right| < 1 \text{ Mais} : \frac{1}{2} \notin A \text{ car} : \frac{5 \times \frac{1}{2} + 1}{\frac{1}{2} + 1} = \frac{\frac{7}{2}}{\frac{3}{2}} = \frac{7}{3} \ge 2 \text{ Donc} : A \ne B$$

Exercice7: Soit
$$E = \{0;1;2\}$$
 déterminer tous les ensembles inclus dans E. Qui s'appelle l'ensemble des parties de E et se note $\mathcal{P}(E)$.

Solution:
$$P(E) = \{\emptyset; \{0\}; \{1\}; \{2\}; \{0;1\}; \{0;2\}; \{1;2\}; E\}$$

Exercice8: Ecrire en extension les ensembles suivants : 1)
$$P(P(\emptyset))$$
 2) $P(P(\{a;b\}))$

Solution :1) Il est aisé de voire que
$$P(\emptyset) = \{\emptyset\}$$

$$\mathsf{Donc}: P(P(\varnothing)) = \{\varnothing; \{\varnothing\}\}\$$

2)
$$P(P(\{a;b\}))$$
:

$$P({a;b}) = {\emptyset;{a};{b};{a;b}}$$

$$\{\{b\};\{a;b\}\};\{\varnothing;\{a\};\{b\}\};\{\varnothing;\{a\};\{a;b\}\};\{\varnothing;\{b\};\{a;b\}\}\}\}\{\{b\};\{a;b\}\};\{\varnothing;\{a\};\{b\}\};\{\varnothing;\{a\};\{a\};\{b\}\};\{\varnothing;\{a\};\{a\}\}\}\}\}$$

$$; \{\emptyset; \{a\}; \{b\}; \{a;b\}\}\}$$

Exercice9: Soient A; B; C trois parties d'un ensemble $E = \{1; 2; 3; 4; 5\}$ telles que :

$$A \cup B = \{2;3;4;5\}$$
 et $A \cap B = \{2;4\}$ et $A \cap C = \{2;3\}$ et $A \cup C = \{1;2;3;4\}$

1) Déterminer :
$$A$$
 ; B ; C

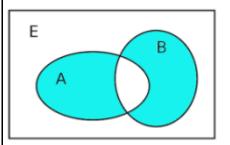
2) Déterminer :
$$A\Delta B$$
 et $B\Delta C$ et $C\Delta A$

Et vérifier que :
$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

Solution :1)
$$A = \{2;3;4\}$$
; $B = \{2;4;5\}$; $C = \{1;2;3\}$

2)
$$A\Delta B = = (A \cup B) \setminus (A \cap B)$$

$$A\Delta B = \{3, 5\}$$
 et $B\Delta C = \{1, 3, 4, 5\}$



$$C\Delta A = \{1; 4\}$$

$$(A\Delta B)\Delta C = \{3,5\}\Delta\{1,2,3\} = \{1,2,5\}$$

$$A\Delta(B\Delta C) = \{2;3;4\}\Delta\{1;3;4;5\} = \{1;2;5\}$$

Donc:
$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

Exercice10: Soient A, B et C trois parties d'un ensemble E.

Montrer que : 1) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

2) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Solution :1)Il s'agit de résultats du cours que l'on peut utiliser sans démonstration mais cet exercice demande de les redémontrer.

Si $x \in A \cup (B \cap C)$ Alors $(x \in A \text{ ou } x \in (B \cap C))$

Alors $(x \in A \text{ ou } (x \in B \text{ et } x \in C))$

Si $x \in A$ alors $x \in A \cup B$ et $x \in A \cup C$,

Par conséquent $x \in (A \cup B) \cap (A \cup C)$.

Si $(x \in B \text{ et } x \in C)$ alors $(x \in A \cup B \text{ et } x \in A \cup C)$

Donc si $(x \in A \text{ ou } (x \in B \text{ et } x \in C))$

Alors $(x \in A \cup B \text{ et } x \in A \cup C)$

On a montré que $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$

Si $x \in (A \cup B) \cap (A \cup C)$ alors $(x \in A \cup B \text{ et } x \in A \cup C)$. $(x \in A \cup B \text{ et } x \in A \cup C)$

 \Leftrightarrow (($x \in A \text{ ou } x \in B$) et ($x \in A \text{ ou } x \in C$))

Si $(x \in A \text{ et } (x \in A \text{ ou } x \in C))$

Alors $x \in A \cap A$ ou $x \in A \cap C$

Si $(x \in B \text{ et } (x \in A \text{ ou } x \in C))$

Alors $x \in B \cap A$ ou $x \in B \cap C$

Alors $x \in A$ ou $x \in A \cap C$ ou $x \in B \cap A$ ou $x \in B \cap C$ Alors $x \in A$ ou $x \in A \cap C \subset A$ ou $x \in B \cap A \subset A$ ou $x \in B \cap C$

Alors $x \in A$ ou $x \in B \cap C$

Alors $x \in A \cup (B \cap C)$

On a montré que $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$ Finalement $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

2) Si $x \in A \cap (B \cup C)$ Alors $(x \in A \text{ et } x \in B \cup C)$

Alors $(x \in A \text{ et } (x \in B \text{ ou } x \in C))$

Alors $(x \in A \text{ et } x \in B)$ ou $(x \in A \text{ et } x \in C)$

Alors $x \in A \cap B$ ou $x \in A \cap C$

Alors $x \in (A \cap B) \cup (A \cap C)$

On a montré que $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$

Si $x \in (A \cap B) \cup (A \cap C)$ Alors $x \in A \cap B$ ou $x \in A \cap C$ Alors $(x \in A \text{ et } x \in B)$ ou $(x \in A \text{ et } x \in C)$

Alors $(x \in A \text{ ou } x \in A)$ et $(x \in A \text{ ou } x \in C)$ et

 $(x \in B \text{ ou } x \in A) \text{ et } (x \in B \text{ ou } x \in C)$

Alors $x \in A$ et $x \in A \cup C$ et $x \in B \cup A$ et $x \in B \cup C$ Comme $x \in A$ et $x \in A \cup C$ et $x \in B \cup A$

Entraine que $x \in A$

 $x \in (A \cap B) \cup (A \cap C) \Rightarrow x \in A \text{ et } x \in B \cup C \Rightarrow x \in A \cap (B \cup C)$

On a montré que $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$

Et finalement $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Exercice11: Soient A; B; C des parties d'un ensemble E.

Démontrer l'implication suivante : $\begin{cases} A \subset B \\ B \subset C \Rightarrow A = B = C \\ C \subset A \end{cases}$

$$A \subset B$$

Solution : On suppose que : A = B = C? $C \subset A$

On a : $A \subset B$ et $B \subset C$ alors : $A \subset C$ On a : $C \subset A$ et $A \subset C$ alors : A = COn a : $B \subset C$ et $C \subset A$ alors : $B \subset A$ On a : $A \subset B$ et $B \subset A$ alors : A = B

On a : $A \subseteq B$ et $B \subseteq A$ alors : A = BOn a : A = B et A = C alors : A = B = C

Exercice12: Soient A; B et C des parties d'un ensemble non vide E

Monter que par contraposition les assertions suivantes :

1) $A \cap B = A \cup B \Rightarrow A = B$

2) $A \cap B = A \cap C$ et $A \cup B = A \cup C \Rightarrow B = C$

Solution : 1) Montrons que : $A \neq B \Rightarrow A \cap B \neq A \cup B$

On suppose que : $A \neq B$

Alors: $\exists x \in A - B \text{ ou } \exists x \in B - A$

 $1^{\text{\'er}}$ cas : $\exists x \in A - B$

 $x \in A - B \Rightarrow x \in A \text{ et } x \notin B$ $\Rightarrow x \in A \cup B \text{ et } x \notin A \cap B$

 $\Rightarrow A \cup B \neq A \cap B$ 2^{ér} cas : $\exists x \in B - A$

 $x \in B - A \Rightarrow x \in B \text{ et } x \notin A$

 $\Rightarrow x \in A \cup B \text{ et } x \notin A \cap B$ $\Rightarrow A \cup B \neq A \cap B$

Donc: $A \neq B \Rightarrow A \cap B \neq A \cup B$

Par contraposition on déduit que :

 $A \cap B = A \stackrel{\cdot}{\cup} B \Longrightarrow A = B$

2) Montrons que : $B \neq C \Rightarrow A \cap B \neq A \cap C$ ou $A \cup B \neq A \cup C$

On suppose que : $B \neq C$

Alors : $\exists x \in B - C$ ou $\exists x \in C - B$

1^{ér} cas : $\exists x \in B - C \Rightarrow x \in B$ et $x \notin C$

Si $x \in A$ alors : $x \in A \cap B$ et $x \notin A \cap C$

 $\Rightarrow A \cap B \neq A \cap C$

Si $x \notin A$ alors : $x \in A \cup B$ et $x \notin A \cup C$

 $\Rightarrow A \cup B \neq A \cup C$

Donc: $B \neq C \Rightarrow A \cap B \neq A \cap C$ ou $A \cup B \neq A \cup C$

Par contraposition on déduit que :

 $A \cap B = A \cap C$ et $A \cup B = A \cup C \Rightarrow B = C$

Exercice13: Soient les ensembles : $A = \left\{ \frac{\pi}{4} + 2\frac{k\pi}{5} : k \in \mathbb{Z} \right\}$ $B = \left\{ \frac{\pi}{2} + 2\frac{k\pi}{5} : k \in \mathbb{Z} \right\}$

Monter que : $A \cap B = \emptyset$

Solution : On suppose que : $A \cap B \neq \emptyset$

Donc: $\exists x_0 \in \mathbb{R} \ x_0 \in A \text{ et } x_0 \in B$

 $\Leftrightarrow \exists (k_1; k_2) \in \mathbb{Z}^2: x_0 = \frac{\pi}{2} + 2\frac{k_1\pi}{5} \text{ et } x_0 = \frac{\pi}{4} + 2\frac{k_2\pi}{5}$

Donc $\Leftrightarrow \exists (k_1; k_2) \in \mathbb{Z}^2 : \frac{\pi}{2} + 2 \frac{k_1 \pi}{5} = \frac{\pi}{4} + 2 \frac{k_2 \pi}{5}$

Donc: $\frac{2}{5}(k_1-k_2) = -\frac{1}{4} \Leftrightarrow k_1-k_2 = -\frac{5}{8}$ contradiction avec la faite que $k_1-k_2 \in \mathbb{Z}$ et $-\frac{5}{8} \notin \mathbb{Z}$ Donc:

PROF: ATMANI NAJIB

6

 $A \cap B = \emptyset$

Exercice14: Soient les ensembles : $E = \{(x, y) \in \mathbb{R}^2 / x^2 - xy - 2y^2 = 0\}$

$$F = \{(x; y) \in \mathbb{R}^2 / x + y = 0\}$$

$$H = \{(x; y) \in \mathbb{R}^2 / y^2 - 2y(x+1) + 2x = 0\}$$

- 1) Montrer que : $F \subset E$
- 2) Déterminer y de \mathbb{R} tel que : $(1,y) \in E$; est ce que on a $E \subset F$?
- 3) Montrer que : $E = F \cup G$ ou G est un ensemble à déterminer
- 4) Soient les ensembles : $A = \{(x; y) \in \mathbb{R}^2 / y = x + 1 + \sqrt{x^2 + 1} = 0\}$;

$$B = \left\{ (x; y) \in \mathbb{R}^2 / y = x + 1 - \sqrt{x^2 + 1} = 0 \right\}$$

- a) Montrer que : $H = A \cup B$
- b) Déterminer : $H \cap F$

Solution : 1) Montrons que : $F \subset E$?

On a:
$$(x, y) \in F \Leftrightarrow x + y = 0 \Leftrightarrow y = -x$$

$$\Rightarrow x^2 - xy - 2y^2 = y^2 + y^2 - 2y^2 = 0 \Rightarrow (x, y) \in E$$

Donc: $F \subset E$

2)
$$(1; y) \in E \Leftrightarrow 1 - y - 2y^2 = 0 \Leftrightarrow (1 + y)(1 - 2y) = 0$$

$$\Leftrightarrow y = 1$$
 ou $y = \frac{1}{2}$

Donc:
$$\left(1; \frac{1}{2}\right) \in E$$
 ou $\left(1; \frac{1}{2}\right) \notin F$

Donc:
$$\exists (x,y) \in \mathbb{R}^2 / (x,y) \notin F$$
 et $(x,y) \in E$

Donc: $E \subset F$

3)
$$(x, y) \in E \Leftrightarrow x^2 - xy - 2y^2 = 0 \Leftrightarrow x^2 - 2xy + xy - 2y^2 = 0$$

$$\Leftrightarrow x^2 + xy - 2xy - 2y^2 = 0 \Leftrightarrow x(x+y) - 2y(x+y) = 0$$

$$\Leftrightarrow (x+y)(x-2y) = 0 \Leftrightarrow x+y=0 \text{ ou } x-2y=0$$

$$\Leftrightarrow$$
 $(x;y) \in F$ ou $(x;y) \in G$

Avec:
$$G = \{(x, y) \in \mathbb{R}^2 / x - 2y = 0\}$$

Donc:
$$\forall (x,y) \in \mathbb{R}^2 (x,y) \in E \Leftrightarrow (x,y) \in F \text{ ou } (x,y) \in G$$

Donc: $E = F \cup G$

4) a)
$$(x, y) \in H \Leftrightarrow y^2 - 2y(x+1) + 2x = 0$$

$$\Leftrightarrow y^2 - 2y(x+1) + (x+1)^2 - (x+1)^2 + 2x = 0 \Leftrightarrow [y - (x+1)]^2 = (x+1)^2 - 2x \Leftrightarrow [y - (x+1)]^2 = x^2 + 1$$

$$\Leftrightarrow y = x + 1 + \sqrt{x^2 + 1}$$
 ou $\Leftrightarrow y = x + 1 - \sqrt{x^2 + 1}$ $\Leftrightarrow (x; y) \in A$ ou $(x; y) \in B$

Donc: $H = A \cup B$

4) b)
$$(x;y) \in H \cap F \Leftrightarrow (x;y) \in H \text{ ou } (x;y) \in F$$

$$\Leftrightarrow x^2 - 2xy + 2x - 2y = 0$$
 et $x = -y$

$$\Leftrightarrow \begin{cases} x^2 + 2x^2 + 2x + 2x = 0 \\ x = -y \end{cases} \Leftrightarrow \begin{cases} 3x^2 + 4x = 0 \\ x = -y \end{cases} \Leftrightarrow \begin{cases} x(3x+4) = 0 \\ x = -y \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 0 \text{ ou } x = -\frac{4}{3} \\ x = -y \end{cases} \Leftrightarrow x = 0 \text{ et } y = 0 \text{ ou } x = -\frac{4}{3} \text{ et } y = \frac{4}{3}$$

Donc:
$$(x;y) \in H \cap F \Leftrightarrow (x;y) \in \left\{ (0;0); \left(-\frac{4}{3}; \frac{4}{3}\right) \right\}$$

$$H \cap F = \left\{ (0;0); \left(-\frac{4}{3}; \frac{4}{3} \right) \right\}$$

$$f:]1; +\infty[\rightarrow]2; +\infty[$$

$$x \mapsto \frac{2x}{x-1}$$

Montrer que f est injective

Solution:
$$f(x) = \frac{2x}{x-1}$$

Soient
$$x_1 \in]1; +\infty[$$
 et $x_2 \in]1; +\infty[$

$$f(x_1) = f(x_2) \Rightarrow \frac{2x_1}{x_1 - 1} = \frac{2x_2}{x_2 - 1}$$

$$\Rightarrow \frac{x_1}{x_1 - 1} = \frac{x_2}{x_2 - 1} \Rightarrow x_1(x_2 - 1) = x_2(x_1 - 1)$$

$$\Rightarrow x_2 x_1 - x_1 = x_1 x_2 - x_2 \Rightarrow -x_1 = -x_2$$

$$\Rightarrow x_1 = x_2$$

Exercice16: Soit l'application :
$$g: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto x^2 - 1$

g est-elle injective?

Solution : On a :
$$g(1) = g(-1) = 0$$
 mais $1 \ne -1$

Donc : g n'est pas injective

Exercice17: Soit l'application :
$$f:]1; +\infty[\to \mathbb{R}$$
 $x \mapsto x + \sqrt{x^2 - x}$

Montrer que f est injective

Solution: Soient
$$x_1 \in]1; +\infty[$$
 et $x_2 \in]1; +\infty[$

$$f(x_1) = f(x_2) \Rightarrow x_1 + \sqrt{x_1^2 - x_1} = x_2 + \sqrt{x_2^2 - x_2}$$

$$\Rightarrow \sqrt{x_1^2 - x_1} - \sqrt{x_2^2 - x_2} = x_2 - x_1$$

$$\Rightarrow \left(\sqrt{x_1^2 - x_1} - \sqrt{x_2^2 - x_2}\right)^2 = (x_2 - x_1)^2$$

$$\Rightarrow x_1^2 - x_1 - 2\sqrt{x_2^2 - x_2}\sqrt{x_1^2 - x_1} + x_2^2 - x_2 = x_2^2 - 2x_1x_2 + x_2^2$$

$$\Rightarrow -x_1 - x_2 - 2\sqrt{x_2^2 - x_2}\sqrt{x_1^2 - x_1} + 2x_1x_2 = 0$$

$$\Rightarrow -x_1 + x_1x_2 - 2\sqrt{x_2^2 - x_2}\sqrt{x_1^2 - x_1} - x_2 + x_1x_2 = 0$$

$$\Rightarrow x_1(x_2-1)-2\sqrt{x_1(x_1-1)}\sqrt{x_2(x_2-1)}+x_2(x_1-1)=0$$

$$\Rightarrow \left(\sqrt{x_1(x_2-1)}\right)^2 - 2\sqrt{x_1(x_1-1)}\sqrt{x_2(x_2-1)} + \left(\sqrt{x_2(x_1-1)}\right)^2 = 0$$

$$\Rightarrow \left(\sqrt{x_1(x_2-1)} - \sqrt{x_2(x_1-1)}\right)^2 = 0 \Rightarrow \sqrt{x_1(x_2-1)} - \sqrt{x_2(x_1-1)} = 0$$

$$\Rightarrow \sqrt{x_1(x_2-1)} = \sqrt{x_2(x_1-1)} \Rightarrow x_1(x_2-1) = x_2(x_1-1)$$

$$\Rightarrow x_1 x_2 - x_1 = x_1 x_2 - x_2 \Rightarrow -x_1 = -x_2 \Rightarrow \sqrt{x_1} - \sqrt{x_2} = 0$$
 ou $\sqrt{x_1} + \sqrt{x_2} + 1 = 0$

 $\Rightarrow x_1 = x$, Ceci signifie que l'application f est injective.

$$f: \left]1; +\infty\right[\to \left]2; +\infty\right[$$

$$x \mapsto \frac{2x}{x-1}$$

Montrer que f est surjective

Solution:
$$f(x) = \frac{2x}{x-1}$$
: Soient $y \in]2; +\infty[$

Résolvons l'équation : f(x) = y

$$f(x) = y \Leftrightarrow \frac{2x}{x-1} = y \Leftrightarrow 2x = y(x-1) \text{ car } x \in]1; +\infty[\text{ donc} : x-1 \neq 0]$$

$$\Leftrightarrow 2x - xy = -y \iff x(2 - y) = -y$$

$$y \in]2; +\infty[$$
 donc $2-y \neq 0$

$$\Leftrightarrow x = \frac{-y}{2-y} = \frac{y}{y-2}$$

Vérifions que :
$$x = \frac{y}{y-2} \in]1; +\infty[???]$$

$$\frac{y}{y-2} - 1 = \frac{y-y+2}{y-2} = \frac{2}{y-2} > 0 \text{ car } y \in]2; +\infty[$$

Donc:
$$x = \frac{y}{y-2} \in \left[1; +\infty\right[$$

Donc
$$\forall y \in]2; +\infty[\exists x \in]1; +\infty[/f(x) = y]$$

Ceci signifie que l'application f est surjective.

Exercice19 : Soit l'application
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^2 + 4x + 1$$

1) Montrer que :
$$\forall x \in \mathbb{R} : f(x) \ge -3$$

Solution: 1) soit
$$x \in \mathbb{R}$$
; Montrons que : $f(x) \ge -3$

$$f(x)-(-3)=x^2+4x+1+3=x^2+4x+4=(x+2)^2 \ge 0$$

Donc:
$$\forall x \in \mathbb{R}; f(x) \ge -3$$

2)
Par exemple : - 4 n'a pas d'antécédents par
$$f$$

C'est-à-dire : l'équation :
$$f(x) = -4$$
 n'a pas de solutions dans \mathbb{R} .

$$f:]2; +\infty[\rightarrow]5; +\infty[$$

$$x \mapsto \frac{5x}{x-2}$$

$$x \mapsto \frac{5x}{x-3}$$

1) Montrer que
$$f$$
 est injective

2) Montrer que
$$f$$
 est surjective

3) En déduire que f est bijective et déterminer sa bijection réciproque.
$$f^{-1}$$

Solution : 1)
$$f(x) = \frac{5x}{x-2}$$

Soient
$$x_1 \in]2; +\infty[$$
 et $x_2 \in]2; +\infty[$

$$f(x_1) = f(x_2) \Rightarrow \frac{5x_1}{x_1 - 2} = \frac{5x_2}{x_2 - 2} \Rightarrow \frac{x_1}{x_1 - 2} = \frac{x_2}{x_2 - 2} \Rightarrow x_1(x_2 - 2) = x_2(x_1 - 2)$$

$$\Rightarrow x_2x_1 - 2x_1 = x_1x_2 - 2x_2 \Rightarrow -2x_1 = -2x_2 \Rightarrow x_1 = x_2$$

Ceci signifie que l'application f est injective.

2)Soient
$$y \in]5; +\infty[$$

Résolvons dans
$$]2;+\infty[$$
 l'équation : $f(x) = y$

Soit:
$$x \in]2; +\infty[$$

$$f(x) = y \Leftrightarrow \frac{5x}{x-2} = y \Leftrightarrow 5x = y(x-2) \text{ car } x \in]2; +\infty[\text{ donc } x-2 \neq 0$$

$$\Leftrightarrow 5x - xy = -2y \iff x(5-y) = -2y$$

$$y \in]5; +\infty[$$
 Donc $5-y \ne 0 \iff x = \frac{-2y}{5-y} = \frac{2y}{y-5}$

Vérifions que :
$$x = \frac{2y}{y-5} \in]2; +\infty[???]$$

$$\frac{2y}{y-5} - 2 = \frac{2y - 2y + 10}{y-5} = \frac{10}{y-5} > 0 \text{ Car } y \in]5; +\infty[$$

Donc:
$$x = \frac{2y}{y-5} \in]2; +\infty[$$

Donc
$$\forall y \in]5; +\infty[\exists x \in]2; +\infty[/f(x) = y$$

Ceci signifie que l'application f est surjective.

3) On a d'après les questions précédentes que l'application f est injective et surjective, ceci signifie d'après un théorème que l'application f est bijective.

$$\begin{cases} f(x) = y \\ x \in]2; +\infty[\end{cases} \Leftrightarrow \begin{cases} x = f^{-1}(y) = \frac{2y}{y - 5} \\ y \in]5; +\infty[\end{cases} \quad \text{Donc} : \forall x \in]5; +\infty[; f^{-1}(x) = \frac{2x}{x - 5} \end{cases}$$

$$f^{-1}$$
: $]5;+\infty[\rightarrow]2;+\infty[$

$$x \mapsto f^{-1}(x) = \frac{2x}{x-5}$$

Exercice21: $E = \{1, 2, 3, 4\}$;

1) Soit f l'application de l'ensemble $E = \{1, 2, 3, 4\}$ dans l'ensemble $F = \{a; b; c; d\}$ définie par :

$$f(1)=c$$
; $f(2)=a$; $f(3)=b$; $f(4)=b$

- a) Déterminer f(A) lorsque : $A = \{2\}$; $A = \{2,3,4\}$
- b) Déterminer $f^{-1}(B)$ lorsque : $B = \{b\}$; $B = \{a;b\}$; $B = \{d\}$
- 2) Soit f l'application de \mathbb{R} dans \mathbb{R} définie par : $f(x) = x^2$
- a) Déterminer f(A) lorsque : $A = \{-1,1\}$
- b) Déterminer $f^{-1}(B)$ lorsque : $B = \{2\}$; $B = \{1,3\}$

Solution: a) Déterminons $f(A): f(A) = \{f(x) | x \in A\}$

$$f(A) = f({2}) = {a}$$

$$f(A) = f({2;3;4}) = {a;b}$$

b)
$$f^{-1}(B) = \{x \in E / f(x) \in B\}$$

$$f^{-1}(B) = f^{-1}(\{b\}) = \{3;4\}$$

$$f^{-1}(B) = f^{-1}(\{a;b\}) = \{2;3;4\}$$

$$f^{-1}(B) = f^{-1}(\{d\}) = \varnothing$$

2)
$$f(x) = x^2$$

a)
$$f(A) = f(\{-1;1\}) = \{1\}$$
 car $f(-1) = f(1) = 1$

b)
$$f^{-1}(B) = \{x \in \mathbb{R} / f(x) \in B\}$$

$$x \in f^{-1}(\{2\}) \Leftrightarrow f(x) = 2 \Leftrightarrow x^2 = 2 \Leftrightarrow x = -\sqrt{2} \text{ ou } x = \sqrt{2}$$

$$f^{-1}(\{2\}) = \{-\sqrt{2}; \sqrt{2}\}$$

$$x \in f^{-1}(\{1;3\}) \Leftrightarrow f(x) \in \{1;3\} \Leftrightarrow x^2 = 2 \Leftrightarrow x = -\sqrt{2} \text{ ou } x = \sqrt{2}$$

$$x^2 = 3 \Leftrightarrow x = -\sqrt{3} \text{ ou } x = \sqrt{3}$$

$$x^2 = 1 \Leftrightarrow x = -1ou \quad x = 1$$

$$f^{-1}(f^{-1}(\{1;3\})) = \{-\sqrt{3};-1;1;\sqrt{3}\}$$

Exercice22: Soit l'application : $f: \mathbb{R} \to \mathbb{R}$ Déterminer $f^{-1}([2;3[$

Solution: Soit: $x \in \mathbb{R}$

$$x \in f^{-1}([2;3]) \Leftrightarrow f(x) \in [2;3[\Leftrightarrow 2 \le f(x) < 3 \Leftrightarrow 2 \le 2x + 1 \le 3]$$

$$\Leftrightarrow 1 \le 2x < 2 \Leftrightarrow \frac{1}{2} \le 2x < 1 \Leftrightarrow x \in \left[\frac{1}{2}; 1\right]$$

D'où :
$$f^{-1}([2;3[)=[\frac{1}{2};1]$$

Exercice23: Soit l'application
$$f: \mathbb{R} \to \mathbb{R}$$
 et $A = [2;11]$ et $B = [-1;6]$

Déterminer :

- 1) L'image directe de A et B par f
- 2) L'image réciproque de A et B par f

Solution: 1) a)
$$x \in A \Leftrightarrow 2 \le x \le 11 \Leftrightarrow 2^2 \le x^2 \le 11^2$$

$$\Leftrightarrow 2^2 + 2 \le x^2 + 2 \le 11^2 + 2 \Leftrightarrow 6 \le x^2 + 2 \le 123 \Leftrightarrow 6 \le f(x) \le 123 \Leftrightarrow f(x) \in [6;123]$$

Donc:
$$x \in A \Leftrightarrow f(x) \in [6;123]$$

Ainsi :
$$f(A) = [6;123]$$

b)
$$B = [-1; 6]$$
 Or : $B = [-1; 6] = [-1; 0] \cup [0; 6]$

$$x \in B \Leftrightarrow -1 \le x \le 0$$
 ou $0 \le x \le 6 \Leftrightarrow 0 \le x^2 \le 1$ ou $0 \le x^2 \le 36$

$$\Leftrightarrow 2 \le x^2 + 2 \le 3$$
 ou $2 \le x^2 + 2 \le 38 \Leftrightarrow 2 \le x^2 + 2 \le 38 \Leftrightarrow f(x) \in [2;38]$

Donc:
$$x \in B \Leftrightarrow f(x) \in [2;38]$$

Ainsi :
$$f(B) = [2;38]$$

2) a)
$$f^{-1}([2;11]) = ?$$

$$f^{-1}([2;11]) \Leftrightarrow f(x) \in [2;11]$$

$$x \in f^{-1}([2;11]) \Leftrightarrow 2 \le x^2 + 2 \le 11 \Leftrightarrow 0 \le x^2 \le 9 \Leftrightarrow 0 \le \sqrt{x^2} \le \sqrt{9}$$

$$\Leftrightarrow 0 \le |x| \le 3 \quad \Leftrightarrow x \in [-3;3]$$

Ainsi:
$$f^{-1}([2;11]) = [-3;3]$$

b)
$$f^{-1}([-1;6]) = ?$$
 ; $f^{-1}([-1;6]) \Leftrightarrow f(x) \in [-1;6]$

$$x \in f^{-1}([-1;6]) \Leftrightarrow -1 \le x^2 + 2 \le 6 \Leftrightarrow -3 \le x^2 \le 4 \Leftrightarrow 0 \le \sqrt{x^2} \le \sqrt{4}$$

$$\Leftrightarrow 0 \le |x| \le 2 \quad \Leftrightarrow x \in [-2; 2]$$

Ainsi:
$$f^{-1}([-1;6]) = [-2;2]$$

Exercice24: Soit l'application :
$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^4 - 2x$$

- 1)a) Déterminer $f^{-1}(\{0\})$
- b) f est-elle injective?
- 2)a) Déterminer $f(\mathbb{R})$
- b) f est-elle surjective?

Solution :1) a) Soit
$$x \in \mathbb{R}$$

$$x \in f^{-1}(\{0\}) \Leftrightarrow f(x) = 0 \Leftrightarrow x^4 - 2x^2 = 0$$

$$\Leftrightarrow x^2(x^2-2)=0 \Leftrightarrow x=0 \quad ou \ x^2-2=0 \Leftrightarrow x=0 \quad ou \ x=\sqrt{2} \quad ou \ x=\sqrt{2} \Leftrightarrow x\in\left\{-\sqrt{2};0;\sqrt{2}\right\}$$

Donc:
$$f^{-1}(\{0\}) = \{-\sqrt{2}; 0; \sqrt{2}\}$$

b) f n'est pas injective car :

On a:
$$f(0) = f(\sqrt{2}) = 0$$
 mais $0 \neq \sqrt{2}$

$$\forall x \in \mathbb{R}^+ \text{ On a : } f(x) \leq 3$$

Donc par exemple l'équation : f(x) = 4 n'admet pas de solution dans \mathbb{R}^+ donc : f est non surjective

$$f^{-1}(B) = \{x \in \mathbb{R} / f(x) \in B\} = \{x \in \mathbb{R} / -1 \le f(x) \le 4\} = \{x \in \mathbb{R} / -1 \le x^2 \le 4\} = \{x \in \mathbb{R} / 0 \le x^2 \le x^2 \le 4\} = \{x \in \mathbb{R} / 0 \le x^2 \le$$

Donc:
$$f^{-1}(B) = [-2; 2]$$

C'est en forgeant que l'on devient forgeron : Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices que l'on devient un mathématicien

